Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Immunother Cancer ; 12(7)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39060024

RESUMO

BACKGROUND: Lymphocyte activation gene 3 (LAG-3) has been considered as the next generation of immune checkpoint and a promising prognostic biomarker of immunotherapy. As with programmed cell death protein-1/programmed death-ligand 1 and cytotoxic T-lymphocyte antigen-4 inhibitors, positron emission tomography (PET) imaging strategies could benefit the development of clinical decision-making of LAG-3-related therapy. In this study, we developed and validated 68Ga-labeled cyclic peptides tracers for PET imaging of LAG-3 expression in bench-to-bedside studies. METHODS: A series of LAG-3-targeted cyclic peptides were modified and radiolabeled with 68GaCl3 and evaluated their affinity and specificity, biodistribution, pharmacokinetics, and radiation dosimetry in vitro and in vivo. Furthermore, hu-PBL-SCID (PBL) mice models were constructed to validate the capacity of [68Ga]Ga-CC09-1 for mapping of LAG-3+ lymphocytes infiltrates using longitudinal PET imaging. Lastly, [68Ga]Ga-CC09-1 was translated into the first-in-human studies to assess its safety, biodistribution and potential for imaging of LAG-3 expression. RESULTS: A series of cyclic peptides targeting LAG-3 were employed as lead compounds to design and develop 68Ga-labeled PET tracers. In vitro binding assays showed higher affinity and specificity of [68Ga]Ga-CC09-1 in Chinese hamster ovary-human LAG-3 cells and peripheral blood mononuclear cells. In vivo PET imaging demonstrated better imaging capacity of [68Ga]Ga-CC09-1 with a higher tumor uptake of 1.35±0.33 per cent injected dose per gram and tumor-to-muscle ratio of 17.18±3.20 at 60 min post-injection. Furthermore, [68Ga]Ga-CC09-1 could detect the LAG-3+ lymphocyte infiltrates in spleen, lung and salivary gland of PBL mice. In patients with melanoma and non-small cell lung cancer, primary lesions with modest tumor uptake were observed in [68Ga]Ga-CC09-1 PET, as compared with that of [18F]FDG PET. More importantly, [68Ga]Ga-CC09-1 delineated the heterogeneity of LAG-3 expression within large tumors. CONCLUSION: These findings consolidated that [68Ga]Ga-CC09-1 is a promising PET tracer for quantifying the LAG-3 expression in tumor microenvironment, indicating its potential as a companion diagnostic for patients stratification and therapeutic response monitoring in anti-LAG-3 therapy.


Assuntos
Radioisótopos de Gálio , Proteína do Gene 3 de Ativação de Linfócitos , Peptídeos Cíclicos , Tomografia por Emissão de Pósitrons , Microambiente Tumoral , Humanos , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Antígenos CD/metabolismo , Feminino , Compostos Radiofarmacêuticos , Camundongos SCID , Linhagem Celular Tumoral , Distribuição Tecidual
2.
J Adv Res ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653371

RESUMO

INTRODUCTION: Myocardial ischemia-reperfusion (IR) injury is a common medical issue contributing to the onset and progression of ischemic heart diseases (IHD). Growth arrest-specific gene 6 (GAS6), a vitamin K-dependent secretory protein, promotes cell proliferation and inhibits inflammation and apoptosis through binding with Tyro3, Axl, and Mertk (TAM) receptors. OBJECTIVES: Our study aimed to examine the effect of GAS6 pathways activation as a potential new treatment in myocardial IR injury. METHODS: Gain- and loss-of-function experiments were utilized to determine the roles of GAS6 in the pathological processes of myocardial IR injury. RESULTS: Our results revealed down-regulated levels of GAS6, Axl, and SIRT1 in murine hearts subjected to IR injury, and cardiomyocytes challenged with hypoxia reoxygenation (HR) injury. GAS6 overexpression significantly improved cardiac dysfunction in mice subjected to myocardial IR injury, accompanied by reconciled mitochondrial dysfunction, oxidative stress, and apoptosis. In vitro experiments also observed a protective effect of GAS6 in cardiomyocytes. SIRT1 was found to function as a downstream regulator for GAS6/Axl signaling axis. Through screening a natural product library, a polyphenol natural compound catechin was identified to exhibit a protective effect by turning on GAS6/Axl-SIRT1 cascade. CONCLUSIONS: Together, our findings indicate that GAS6 emerges as a potential novel target in the management of myocardial IR injury and other related anomalies.

3.
Biochem Pharmacol ; 221: 116035, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301968

RESUMO

In a previous study, we used metabolomic techniques to identify a new metabolite of Danshen Dripping Pills called isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP), which has potential as a drug candidate for cardiovascular diseases. This study aimed to explore the protective effects of IDHP against septic myocardial injury, as well as its molecular mechanism. Wild type or GAS6 knockout mice injured by cecal ligation and puncture (CLP) were used to observe the effect of IDHP. Here, we found that a specific concentration of IDHP (60 mg/kg) significantly increased the survival rate of septic mice to about 75 % at 72 h post CLP, and showed improvements in sepsis score, blood biochemistry parameters, cardiac function, and myocardial tissue damage. Furthermore, IDHP inhibited myocardial oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. Molecularly, we discovered that IDHP treatment reversed the CLP-induced downregulation of GAS6, Axl, and p-AMPK/AMPK expression. In addition, GAS6 knockout reversed the positive effect of IDHP in septic mice, indicated by more severe myocardial tissue damage, oxidative stress, inflammatory response, and mitochondrial dysfunction. GAS6 knockout also resulted in decreased levels of GAS6, Axl, and p-AMPK/AMPK. Taken together, our study provides evidence that IDHP has significant cardioprotective effects against sepsis by regulating the GAS6/Axl-AMPK signaling pathway. This finding has important therapeutic potential for treating sepsis.


Assuntos
Doenças Mitocondriais , Sepse , Infecção dos Ferimentos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Miocárdio , Transdução de Sinais , Camundongos Knockout , Sepse/tratamento farmacológico
4.
Free Radic Biol Med ; 210: 195-211, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979891

RESUMO

Sepsis is a major health threat and often results in heart failure. Growth arrest-specific gene 6 (GAS6), a 75-kDa vitamin K-dependent protein, participates in immune regulation and inflammation through binding to AXL (the TAM receptor family). This study was designed to examine the myocardial regulatory role of GAS6 in sepsis. Serum GAS6 levels were increased in septic patients and mice while myocardial GAS6 levels were decreased in septic mice. Single-cell RNA sequencing further revealed a decline in GAS6 levels of nearly all cell clusters including cardiomyocytes. GAS6 overexpression via adeno-associated virus 9 (AAV9) overtly improved cardiac dysfunction in cecum ligation and puncture (CLP)-challenged mice, along with alleviated mitochondrial injury, endoplasmic reticulum stress, oxidative stress, and apoptosis. However, GAS6-elicited beneficial effects were removed by GAS6 knockout. The in vitro study was similar to these findings. Our data also noted a downstream effector role for NLRP3 in GAS6-initiated myocardial response. GAS6 knockout led to elevated levels of NLRP3, the effect of which was reconciled by GAS6 overexpression. Taken together, these results revealed the therapeutical potential of targeting GAS6/AXL-NLRP3 signaling in the management of heart anomalies in sepsis.


Assuntos
Cardiopatias , Sepse , Animais , Humanos , Camundongos , Cardiopatias/metabolismo , Inflamassomos , Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/complicações , Sepse/genética
5.
J Adv Res ; 55: 145-158, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36801383

RESUMO

INTRODUCTION: Myocardial injury is a serious complication in sepsis with high mortality. Zero-valent iron nanoparticles (nanoFe) displayed novel roles in cecal ligation and puncture (CLP)-induced septic mouse model. Nonetheless, its high reactivity makes it difficult for long-term storage. OBJECTIVES: To overcome the obstacle and improve therapeutic efficiency, a surface passivation of nanoFe was designed using sodium sulfide. METHODS: We prepared iron sulfide nanoclusters and constructed CLP mouse models. Then the effect of sulfide-modified nanoscale zero-valent iron (S-nanoFe) on the survival rate, blood routine parameters, blood biochemical parameters, cardiac function, and pathological indicators of myocardium was observed. RNA-seq was used to further explore the comprehensive protective mechanisms of S-nanoFe. Finally, the stability of S-nanoFe-1d and S-nanoFe-30 d, together with the therapeutic efficacy of sepsis between S-nanoFe and nanoFe was compared. RESULTS: The results revealed that S-nanoFe significantly inhibited the growth of bacteria and exerted a protective role against septic myocardial injury. S-nanoFe treatment activated AMPK signaling and ameliorated several CLP-induced pathological processes including myocardial inflammation, oxidative stress, mitochondrial dysfunction. RNA-seq analysis further clarified the comprehensive myocardial protective mechanisms of S-nanoFe against septic injury. Importantly, S-nanoFe had a good stability and a comparable protective efficacy to nanoFe. CONCLUSIONS: The surface vulcanization strategy for nanoFe has a significant protective role against sepsis and septic myocardial injury. This study provides an alternative strategy for overcoming sepsis and septic myocardial injury and opens up possibilities for the development of nanoparticle in infectious diseases.


Assuntos
Traumatismos Cardíacos , Sepse , Camundongos , Animais , Ferro , Miocárdio/patologia , Traumatismos Cardíacos/tratamento farmacológico , Traumatismos Cardíacos/complicações , Traumatismos Cardíacos/patologia , Sepse/tratamento farmacológico , Sepse/complicações , Sulfetos/uso terapêutico
6.
ACS Omega ; 8(34): 31178-31187, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663513

RESUMO

Flexible magnetoelectronic devices (based on magnetic films) have great application prospects in the fields of information storages, bionic robotics, and electronic skins. The intrinsic stress and external loading are very important to modulate the structures and properties of flexible magnetic films due to the magnetoelastic coupling effect. Here, we report on tunable magnetic domain patterns in thickness-gradient nickel (Ni) films deposited on flexible polydimethylsiloxane substrates. It is found that stripe magnetic domains spontaneously form in the Ni films and their sizes increase with the film thickness. The internal stress evolves from tensile to compressive states with decreasing film thickness, leading to the formation of cracks in thicker regions and wrinkles in thinner regions. Meanwhile, the orientations of stripe magnetic domains change from the gradient direction to the orthogonal direction. The structural features, evolution behaviors, and physical mechanisms of the cracks, wrinkles, and magnetic domains are analyzed based on the stress theory and magnetoelastic coupling. Periodic gradient Ni films with large-scale regulations of stripe magnetic domains are also realized by masking of copper grids. This study helps to better understand the magnetoelastic coupling effect in gradient flexible magnetic films and provides a technique to modulate anisotropic magnetic properties by designing specific film systems.

7.
Free Radic Biol Med ; 204: 8-19, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37085126

RESUMO

Sepsis can cause various organ dysfunction, which heart failure may be associated with significant mortality. Recently, natural plant extracts have gradually attracted people's attention in the clinical treatment of cardiovascular diseases. Psoralidin (PSO) is one of the main bioactive compounds from the seeds of Psoralea corylifolia L and exhibits remarkable protective effects in diseases, including cancer, osteoporosis, and depression. Recently, NR1H3 is one of the emerging nuclear receptors targets for the various drugs. This study first reported the porotective role of PSO in septic myocardial injury, which was mainly attributed to the NR1H3-dependent manner. NR1H3 knockout mice subjected to cecal ligation and puncture (CLP) were used to investigate the involvement of NR1H3 in PSO protection. Our results showed that PSO prominently improved cardiac function, attenuated inflammation, inhibited oxidative stress, improved mitochondrial function, regulated ERS, suppressed apoptosis, and particularly increased NR1H3 and p-AMPK levels. However, NR1H3 knockout reversed the positive role of PSO in septic mice. Furthermore, activation of NR1H3 by T0901317 also increased the activity of AMPK and ACC in the HL-1 cardiomyocytes, indicating the regulatory relationship between NR1H3 and AMPK signaling. Together, this study demonstrated the beneficial effect of PSO in septic myocardial injury through activation of NR1H3/AMPK pathway.


Assuntos
Traumatismos Cardíacos , Sepse , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Camundongos Knockout , Sepse/tratamento farmacológico , Sepse/genética , Sepse/complicações
8.
Apoptosis ; 28(3-4): 485-497, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36580193

RESUMO

Oxidative stress plays a key part in cardiovascular event. Growth arrest-specific gene 6 (GAS6) is a vitamin K-dependent ligand which has been shown to exert important effects in heart. The effects of GAS6 were evaluated against hydrogen peroxide (H2O2) ­induced oxidative stress injury in HL-1 cardiomyocytes. A series of experimental methods were used to analyze the effects of GAS6 on cell viability, apoptosis, oxidative stress, mitochondrial function and AMPK/ACC signaling in H2O2­injured HL-1 cells. In this study, we found that H2O2 reduced cell viability, increased apoptotic rate and intracellular reactive oxygen species (ROS). Meanwhile, H2O2 decreased the protein levels of GAS6, and increased the protein level of p-AMPK/AMPK, p-ACC/ACC. Then, we observed that overexpression of GAS6 significantly reduced cell death, manifested as increased cell viability, improved oxidative stress, apoptosis and upregulated the levels of GAS6, p-Axl/Axl, Nrf2, NQO1, HO-1, Bcl-2/Bax, PGC-1α, NRF1, TFAM, p-AMPK/AMPK, and p-ACC/ACC-related protein expression in HL-1 cells and H2O2­injured cardiomyocytes. To further verify the results, we successfully constructed GAS6 lentiviral vectors, and found GAS6 shRNA partially reversed the above results. These data suggest that AMPK/ACC may be a downstream effector molecule in the antioxidant action of GAS6. In summary, our findings indicate that activation GAS6/Axl-AMPK signaling protects H2O2­induced oxidative stress which is accompanied by the amelioration of oxidative stress, apoptosis, and mitochondrial function.


Assuntos
Proteínas Quinases Ativadas por AMP , Peróxido de Hidrogênio , Proteínas Quinases Ativadas por AMP/genética , Apoptose , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Transdução de Sinais , Receptor Tirosina Quinase Axl/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
9.
Br J Cancer ; 128(4): 691-701, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482192

RESUMO

BACKGROUND: Decitabine (DAC) is used as the first-line therapy in patients with higher-risk myelodysplastic syndromes (HR-MDS) and elderly acute myeloid leukaemia (AML) patients unsuitable for intensive chemotherapy. However, the clinical outcomes of patients treated with DAC as a monotherapy are far from satisfactory. Adding all-trans retinoic acid (ATRA) to DAC reportedly benefitted MDS and elderly AML patients. However, the underlying mechanisms remain unclear and need further explorations from laboratory experiments. METHODS: We used MDS and AML cell lines and primary cells to evaluate the combined effects of DAC and ATRA as well as the underlying mechanisms. We used the MOLM-13-luciferase murine xenograft model to verify the enhanced cytotoxic effect of the drug combination. RESULTS: The combination treatment reduced the viability of MDS/AML cells in vitro, delayed leukaemia progress, and extended survival in murine xenograft models compared to non- and mono-drug treated models. DAC application as a single agent induced Nrf2 activation and downstream antioxidative response, and restrained reactive oxygen species (ROS) generation, thus leading to DAC resistance. The addition of ATRA blocked Nrf2 activation by activating the RARα-Nrf2 complex, leading to ROS accumulation and ROS-dependent cytotoxicity. CONCLUSIONS: These results demonstrate that combining DAC and ATRA has potential for the clinical treatment of HR-MDS/AML and merits further exploration.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Animais , Camundongos , Idoso , Decitabina/farmacologia , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Antineoplásicos/uso terapêutico , Síndromes Mielodisplásicas/induzido quimicamente , Síndromes Mielodisplásicas/tratamento farmacológico , Tretinoína/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Azacitidina
10.
Hematol Oncol ; 41(3): 546-554, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36516239

RESUMO

The treatment of patients with refractory and/or relapsed (R/R) high-risk myelodysplastic syndrome (HR-MDS) remains a daunting clinical challenge. Venetoclax is a selective BCL-2 inhibitor, which combined with hypomethylating agents (HMAs), increased responses and prolonged survival in unfit and previously untreated acute myeloid leukemia. We performed a retrospective study of patients with R/R HR-MDS receiving combination azacytidine (AZA) plus 15-days duration of venetoclax (VEN-15d) in order to determine their efficacy and toxicity in this context. We showed that the overall response rate was 57.2% (20/35) and the median over survival was 14 months in R/R MDS. The most common treatment-emergent adverse events were peripheral blood cytopenias and infectious complications. Our retrospective study showed that the real-world experience of treating R/R MDS with AZA plus VEN-15d highlights an encouraging response rate with myelosuppression being the major toxicity. Of note, VEN-15d with AZA may salvage patients failing to respond optimally to HMAs and reduce the disease-burden for subsequent allogeneic stem cell transplantation in our analysis. These data of combination AZA plus VEN-15d in R/R MDS warrant further prospective evaluation in clinical trials.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Azacitidina/efeitos adversos , Estudos Retrospectivos , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Leucemia Mieloide Aguda/terapia
11.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166535, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058416

RESUMO

Claudin-5 has recently attracted increasing attention by its potential as a novel treatment target in the early stage of heart failure. However, whether Claudin-5 produces beneficial effects on myocardial ischemia and reperfusion (IR) injury has not been elucidated yet. In this study, we identified reduced levels of Claudin-5 in the hearts of mice subjected to acute myocardial IR injury and murine HL-1 cardiomyocytes subjected to hypoxia and reoxygenation (HR). We then constructed cardiac-specific Cldn5-overexpressing mice using an adeno-associated virus (AAV9) vector and demonstrated that Cldn5 overexpression ameliorated cardiac dysfunction and myocardial damage in mice subjected to myocardial IR injury. Moreover, Cldn5 overexpression attenuated myocardial oxidative stress (DHE and protein levels of Nrf2, HO-1, and NQO1), inflammatory response (levels of MPO, F4/80, Ly6C, and circulating inflammatory cells), mitochondrial dysfunction (protein levels of PGC-1α, NRF1, and TFAM), endoplasmic reticulum stress (protein levels of GRP78, ATF6, and CHOP and p-PERK), energy metabolism disorder (p-AMPK and ACC), and apoptosis (TUNEL assay and protein levels of Bax and Bcl2) in mice subjected to myocardial IR. Next, we generated Cldn5 knockdown cells by lentiviral shRNA and observed that Cldn5 knockdown inhibited cell viability and affected the expression or activation of these IR-related signalings in HL-1 cardiomyocytes subjected to HR. Mechanistically, SIRT1 was proved to be involved in regulating the expression of Claudin-5 by co-immunoprecipitation analysis and Sirt1 knockdown experiments. Our data demonstrated that targeting Claudin-5 may represent a promising approach for preventing and treating acute myocardial IR injury.


Assuntos
Claudina-5 , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Claudina-5/genética , Claudina-5/metabolismo , Camundongos , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/metabolismo , Sirtuína 1/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
12.
J Adv Res ; 40: 249-261, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100330

RESUMO

INTRODUCTION: Adriamycin (ADR) is an efficient and common broad-spectrum anticancer drug. However, the cumulative and dose-dependent toxicity induced by ADR severely limits its application in the clinic. Previous studies found that psoralidin (PSO) exhibits remarkable therapeutic effects against multiple cancers. OBJECTIVES: The aim of this study was to determine if PSO has beneficial effects on ADR-induced cardiotoxicity and to investigate the underlying mechanisms. METHODS: ADR-induced cardiotoxicity models were established in BALB/c mice and HL-1 cardiomyocytes. A series of experimental methods were used to evaluate the effects of PSO on cardiac function indicators, blood biochemical parameters, histopathology, oxidative stress, apoptosis, mitochondrial function, fibrosis, and SIRT1/PPARγ signaling. RESULTS: PSO significantly improved cardiac function indicators, blood biochemical parameters, and mitochondrial function and reduced the degree of myocardial fibrosis, oxidative stress, and apoptosis in ADR-injured mice. PSO significantly increased cell viability, inhibited the release of LDH, reduced oxidative stress and apoptosis, and improved mitochondrial function in ADR-injured HL-1 cells. Moreover, we also demonstrated there was cross-talk between SIRT1 and PPARγ, as shown by SIRT1 siRNA significantly decreasing the expression of PPARγ and GW9662 (a PPARγ antagonist), which remarkably reduced the expression of SIRT1. CONCLUSION: In summary, this study proved for the first time the beneficial effect of PSO on ADR-induced cardiotoxicity through activation of the SIRT1/PPARγ signaling pathway. Therefore, these findings may favor PSO as a potential cardioprotective drug candidate to alleviate ADR-induced cardiotoxicity in the clinic and improve the application of ADR in oncotherapy.


Assuntos
Cardiotoxicidade , Doxorrubicina , Animais , Benzofuranos , Cardiotoxicidade/tratamento farmacológico , Cumarínicos , Camundongos , PPAR gama , Sirtuína 1/metabolismo
13.
Phytother Res ; 36(6): 2628-2640, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35583809

RESUMO

Psoralidin (PSO) is a natural phenolic coumarin extracted from the seeds of Psoralea corylifolia L. Growing preclinical evidence indicates that PSO has anti-inflammatory, anti-vitiligo, anti-bacterial, and anti-viral effects. Growth arrest-specific gene 6 (GAS6) and its receptor, Axl, modulate cellular oxidative stress, apoptosis, survival, proliferation, migration, and mitogenesis. Notably, the neuroprotective role of the GAS6/Axl axis has been identified in previous studies. We hypothesize that PSO ameliorates cerebral hypoxia/reoxygenation (HR) injury via activating the GAS6/Axl signaling. We first confirmed that PSO was not toxic to the cells and upregulated GAS6 and Axl expression after HR injury. Moreover, PSO exerted a marked neuroprotective effect against HR injury, represented by restored cell viability and cell morphology, decreased lactate dehydrogenase (LDH) release, and reactive oxygen species (ROS) generation. Furthermore, PSO pretreatment also elevated the levels of nuclear factor-related factor 2 (Nrf-2), NAD(P)H dehydrogenase quinone-1 (NQO1), heme oxygenase-1 (HO-1), silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF1), uncoupling protein 2 (UCP2), and B-cell lymphoma 2 (BCl2) both in the condition of baseline and HR injury. However, GAS6 siRNA or Axl siRNA inhibited the neuroprotective effects of PSO. Our findings suggest that PSO pretreatment attenuated HR-induced oxidative stress, apoptosis, and mitochondrial dysfunction in neuroblastoma cells through the activation of GAS6/Axl signaling.


Assuntos
Hipóxia Encefálica , Fármacos Neuroprotetores , Benzofuranos , Cumarínicos/farmacologia , Humanos , Hipóxia , Peptídeos e Proteínas de Sinalização Intercelular , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
14.
J Cancer Res Clin Oncol ; 148(4): 845-856, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35013795

RESUMO

BACKGROUND: The implication of mutational variant allelic frequency (VAF) has been increasingly considered in the prognostic interpretation of molecular data in myeloid malignancies. However, the impact of VAF on outcomes of myelodysplastic syndromes (MDS) has not been extensively explored. METHODS: Targeted next-generation sequencing was performed in 350 newly diagnosed MDS cases. The associations of mutational VAF of each gene with overall survival (OS) and leukemia-free survival (LFS) were examined by multivariate Cox regression after univariate analysis. RESULTS: Shorter OS was independently associated with DNMT3A VAF (HR 1.020 per 1% VAF increase; 95% CI 1.005-1.035; p = 0.011) and TP53 VAF (HR 1.014 per 1% VAF increase; 95% CI 1.006-1.022; p = 0.001). LFS analyses revealed that TET2 VAF (HR 1.013 per 1% VAF increase; 95% CI 1.005-1.022; p = 0.003) and TP53 VAF (HR 1.012 per 1% VAF increase; 95% CI 1.004-1.021; p = 0.005) were independently associated with faster leukemic transformation. Furthermore, we established nomograms to predict OS and LFS, respectively, by integrating independent mutational predictors into the revised International Prognostic Scoring System. CONCLUSION: Our study highlights that VAF of certain genes should be incorporated into routine clinical prognostication of survival and leukemic transformation of MDS.


Assuntos
Síndromes Mielodisplásicas , Proteína Supressora de Tumor p53 , Frequência do Gene , Humanos , Mutação , Síndromes Mielodisplásicas/genética , Prognóstico , Proteína Supressora de Tumor p53/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-34349830

RESUMO

OBJECTIVE: To investigate the effects of Danggui Buxue Tang (DBT) on rats with pulmonary fibrosis (PF) and the underlying mechanism. METHODS: Sixty specific pathogen-free (SPF) male Sprague-Dawley (SD) rats were randomly divided into 4 groups: control, PF, prednisone treatment, and DBT treatment. Intratracheal instillation of bleomycin (BLM) was performed to establish a PF rat model. DBT was administered to PF rats concurrently for 2 weeks. Lung samples were then collected for HE and Masson staining after pulmonary function testing, and semiquantitative analysis for the degree of alveolitis and fibrosis was performed using the Szapiel and Ashcroft score systems. Myeloperoxidase (MPO) activity, hydroxyproline (HYP), hyaluronic acid (HA), and inflammatory cytokine content were measured. Western blotting was performed to detect fibrotic marker and TLR4/NLRP3 signaling pathway changes. RESULTS: Oral administration of DBT attenuated weight loss, survival rate, and pulmonary index. Lung histopathologic lesions were also reduced. DBT inhibited PF by decreasing the secretion of inflammatory cytokines and collagen deposition. Specifically, DBT reduced tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), IL-6, HYP, alpha-smooth muscle actin (α-SMA), collagen I, and collagen III levels. Corollary experiments identified a potential mechanism involving suppression of TLR4/MyD88/NF-κB signaling pathway activation and the NLRP3/ASC/caspase-1 axis, the downstream regulatory pathway. CONCLUSION: DBT exhibited a potent effect on BLM-induced PF rats by inhibiting the TLR4/NLRP3 signaling pathway. Thus, DBT alleviates pulmonary inflammation to inhibit fibrotic pathology and should be considered as a candidate for the clinical treatment of PF.

16.
Eur J Pharmacol ; 907: 174236, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116043

RESUMO

Ischemia reperfusion injury (IRI) is associated with poor prognoses in the setting of ischemic brain diseases. Silence information regulator 1 (SIRT1) is a member of the third class of nicotinamide adenine dinucleotide (NAD+)-dependent sirtuins. Recently, the role of SIRT1/peroxisome proliferators-activated receptor-γ coactivator 1α (PGC-1α) pathway in organ (especially the brain) protection under various pathological conditions has been widely investigated. Mangiferin (MGF), a natural C-glucosyl xanthone polyhydroxy polyphenol, has been shown to be beneficial to several nervous system diseases and the protective effects of MGF can be achieved through the regulation of SIRT1 signaling. This study is designed to investigate the protective effects of MGF treatment in the setting of cerebral IRI and to elucidate the potential mechanisms. We first evaluated the toxicity of MGF and chose the safe concentrations for the following experiments. MGF exerted obvious neuroprotection against hypoxia/reoxygenation (HR)-induced injury, indicated by restored cell viability and cell morphology, decreased lactate dehydrogenase (LDH) release and reactive oxygen species generation. MGF also restored the protein expressions of SIRT1, PGC-1α, Nrf2, NQO1, HO-1, NRF1, UCP2, and Bcl2 down-regulated by HR treatment. However, SIRT1 siRNA could reverse MGF-induced neuroprotection and decrease the expressions of molecules mentioned above. Taken together, our findings suggest that MGF treatment exerts neuroprotection against HR injury via activating SIRT1/PGC-1α signaling. These findings may provide a theoretical basis for the exploitation of MGF as a potential neuroprotective drug candidate, which may be beneficial for the ischemic stroke patients in clinic.


Assuntos
Xantonas , Humanos , Masculino , Sirtuína 1
17.
Leuk Lymphoma ; 62(8): 1920-1929, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33682621

RESUMO

Treatment for acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy is a major challenge for clinicians. We enrolled 154 patients ineligible for intensive chemotherapy who were prescribed D-IA regimen (decitabine 15-20 mg/m2 days 1 to 3-5, followed by idarubicin 3 mg/m2 for 5-7 days and cytarabine 30 mg/m2 for 7-14 days). For AML and MDS patients, the overall response rate after two cycles was 66.4% and 76.6%, respectively, and the 2-year overall survival rates were 29% and 31%, respectively. Fourteen (13.1%) AML and five (10.6%) MDS patients underwent allo-HSCT after complete remission. The allo-HSCT group survival time was significantly longer than the control group (median survival time not reached in HSCT group, 13 and 18.5 months in non-HSCT AML and MDS group). We concluded that D-IA regimen was effective and well tolerated for patients with AML or higher-risk MDS ineligible for intensive chemotherapy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Citarabina/efeitos adversos , Decitabina/uso terapêutico , Humanos , Idarubicina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Estudos Retrospectivos
18.
Cancer Med ; 10(5): 1759-1771, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33609081

RESUMO

PURPOSE: To explore the relevance of cytogenetic or molecular genetic abnormalities to clinical variables, including clinical and laboratory characteristics and prognosis in Chinese patients with myelodysplastic syndromes (MDS). METHODS: A total of 634 consecutive patients diagnosed with MDS at The First Affiliated Hospital, Zhejiang University School of Medicine from June 2008 to May 2018 were retrospectively included in this study. All patients had evaluable cytogenetic analysis, and 425 patients had MDS-related mutations sequencing. RESULTS: 38.6% of patients displayed abnormal karyotypes. The most common cytogenetic abnormality was +8 (31%). Sole +8 was related to female (p = 0.002), hemoglobin >10 g/dL (p = 0.03), and <60 years old (p = 0.046). TP53 mutations were associated with complex karyotype (CK) (p < 0.001). DNMT3A mutations correlated with -Y (p = 0.01) whereas NRAS mutations correlated with 20q- (p = 0.04). The overall survival (OS) was significantly inferior in patients with +8 compared with those with normal karyotype (NK) (p = 0.003). However, the OS of sole +8 and +8 with one additional karyotypic abnormality was not different from NK (p = 0.16), but +8 with two or more abnormalities had a significantly shorter OS than +8 and +8 with one additional karyotypic abnormality (p = 0.02). In multivariable analysis, ≥60 years old, marrow blasts ≥5% and TP53 mutations were independent predictors for poor OS (p < 0.05), whereas SF3B1 mutations indicated better prognosis. Male IDH1 and IDH2 mutations and marrow blasts ≥5% were independent risk factors for worse leukemia free survival (LFS) (p < 0.05). CONCLUSION: In this population of Chinese patients, trisomy 8 is the most common karyotypic abnormality. Patients with +8 showed a poorer OS compared with patients with NK. Sole +8 and +8 with one additional karyotypic abnormality had similar OS with NK, whereas +8 with two or more abnormalities had a significantly shorter OS. DNMT3A mutations correlated with -Y and NRAS mutations correlated with 20q-. TP53 mutations were associated with CK and had a poor OS. SF3B1 mutations indicated a favorable OS. IDH1 and IDH2 mutations independently indicated inferior LFS.


Assuntos
Aberrações Cromossômicas/estatística & dados numéricos , Cariótipo , Mutação , Síndromes Mielodisplásicas/genética , Trissomia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Crise Blástica/patologia , Medula Óssea , China , Cromossomos Humanos Par 8 , Análise Mutacional de DNA , Intervalo Livre de Doença , Feminino , Genes p53 , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/patologia , Fenótipo , Prognóstico , Estudos Retrospectivos , Fatores Sexuais , Adulto Jovem
19.
Cancer Med ; 10(5): 1715-1725, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559357

RESUMO

Chronic myelomonocytic leukemia (CMML) is a rare disease of elderly people characterized by the presence of sustained peripheral blood monocytosis, overlapping features of myeloproliferation, and myelodysplasia. We present a large retrospective study of 156 CMML patients in China. Mean age at diagnosis was 68 years old (range 23-91). According to the CMML-specific prognostic scoring system (CPSS), 10 patients (8.3%) were low risk, 27 patients (22.5%) were intermediate-1 risk, 72 patients (60%) were intermediate-2 risk, and 11 patients (9.2%) were high risk. A total of 90 patients (57.7%) received hypomethylating agents (HMAs) treatment, 19 patients (12.2%) received chemotherapy and 47 patients (30.1%) received the best supportive care. Seventeen patients (10.9%) underwent allogeneic hematopoietic stem cell transplantation (allo-SCT) after HMAs treatment or chemotherapy. With a median follow-up of 35.3 months, overall response rate (ORR) was 69.5% in the HMAs ± chemotherapy group, 79.5% in the HMAs monotherapy group, 60.0% in the HMAs + chemotherapy group, and 37.5% in the chemotherapy group. HMAs monotherapy group had prolonged OS compared with the chemotherapy group (23.57 months vs. 11.73 months; p = 0.035). Patients who achieved ORR had prolonged OS (25.83 months vs. 8.00 months; p < 0.001) and LFS (20.53 months vs. 6.80 months; p < 0.001) compared with those not achieved ORR in the HMA ± chemotherapy group. By univariate analysis, only higher hemoglobulin (≥80 g/L) and lower serum LDH levels (<300 U/L) predicted for better OS and LFS. By multivariate analysis, only Hb ≥ 80 g/L predicted for prolonged OS, Hb ≥ 80 g/L, and monocytes < 3 × 109/L predicted for prolonged LFS. In summary, our study highlights the benefit of HMAs therapy in CMML, but we still need to develop novel therapeutics to achieve better outcomes.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Transplante de Células-Tronco Hematopoéticas/estatística & dados numéricos , Humanos , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/mortalidade , Pessoa de Meia-Idade , Análise Multivariada , Estudos Retrospectivos , Risco , Fatores de Tempo , Transplante Homólogo/estatística & dados numéricos , Resultado do Tratamento , Adulto Jovem
20.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602807

RESUMO

Site-selective chemical bioconjugation reactions are enabling tools for the chemical biologist. Guided by a careful study of the selenomethionine (SeM) benzylation, we have refined the reaction to meet the requirements of practical protein bioconjugation. SeM is readily introduced through auxotrophic expression and exhibits unique nucleophilic properties that allow it to be selectively modified even in the presence of cysteine. The resulting benzylselenonium adduct is stable at physiological pH, is selectively labile to glutathione, and embodies a broadly tunable cleavage profile. Specifically, a 4-bromomethylphenylacetyl (BrMePAA) linker has been applied for efficient conjugation of complex organic molecules to SeM-containing proteins. This expansion of the bioconjugation toolkit has broad potential in the development of chemically enhanced proteins.


Assuntos
Glutationa/metabolismo , Selenometionina/química , Selenometionina/metabolismo , Selenoproteínas/metabolismo , Catálise , Selenoproteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA