Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell Biosci ; 14(1): 72, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840175

RESUMO

Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs. This comprehensive review systematically explores the origins, characteristics, and functions of EPCs, alongside the classification, properties, biogenesis, and extraction techniques of EVs, with particular emphasis on their protective roles in CVDs. Additionally, we delve into the essential bioactive components of EPC-EVs, including microRNAs, long non-coding RNAs, and proteins, analyzing their beneficial effects in promoting angiogenesis, anti-inflammatory and anti-oxidant activities, anti-fibrosis, anti-apoptosis, and myocardial regeneration. Furthermore, this review comprehensively investigates the therapeutic potential of EPC-EVs across various CVDs, encompassing acute myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, non-ischemic cardiomyopathies, and diabetic cardiovascular disease. Lastly, we summarize the potential challenges associated with the clinical application of EPC-EVs and outline future directions, aiming to offer a valuable resource for both theoretical insights and practical applications of EPC-EVs in managing CVDs.

2.
Cardiovasc Diabetol ; 23(1): 202, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867293

RESUMO

The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cß (PKCß) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCß activation. The mechanism by which Y4 RNA affects PKCß by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCß in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCß knockout mice. Our findings indicate that PKCß plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCß expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCß/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.


Assuntos
Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Proteína Quinase C beta , Transdução de Sinais , Animais , Proteína Quinase C beta/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Macrófagos/metabolismo , Macrófagos/enzimologia , Masculino , Interleucina-10/metabolismo , Interleucina-10/genética , Camundongos , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Células Cultivadas , Fenótipo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ativação de Macrófagos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Função Ventricular Esquerda , Fosforilação
3.
Biol Chem ; 404(6): 619-631, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36780323

RESUMO

MicroRNA (miR)-143-3p is a potential regulatory molecule in myocardial ischemia/reperfusion injury (MI/RI), wherein its expression and pathological effects remains controversial. Thus, a mouse MI/RI and cell hypoxia/reoxygenation (H/R) models were built for clarifying the miR-143-3p's role in MI/RI. Following myocardial ischemia for 30 min, mice underwent reperfusion for 3, 6, 12 and 24 h. It was found miR-143-3p increased in the ischemic heart tissue over time after reperfusion. Cardiomyocytes transfected with miR-143-3p were more susceptible to apoptosis. Mechanistically, miR-143-3p targeted B cell lymphoma 2 (bcl-2). And miR-143-3p inhibition reduced cardiomyocytes apoptosis upon H/R, whereas it was reversed by a specific bcl-2 inhibitor ABT-737. Of note, miR-143-3p inhibition upregulated bcl-2 with better mitochondrial membrane potential (Δψm), reduced cytoplasmic cytochrome c (cyto-c) and caspase proteins, and minimized infarction area in mice upon I/R. Collectively, inhibition of miR-143-3p might alleviate MI/RI via targeting bcl-2 to limit mitochondria-mediated apoptosis. To our knowledge, this study further clarifies the miR-143-3p's pathological role in the early stages of MI/RI, and inhibiting miR-143-3p could be an effective treatment for ischemic myocardial disease.


Assuntos
MicroRNAs , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , MicroRNAs/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Apoptose , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Traumatismo por Reperfusão/metabolismo
4.
Drug Metab Dispos ; 48(3): 217-229, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31911485

RESUMO

Alisertib (MLN8237) is an investigational, orally available, selective aurora A kinase inhibitor in clinical development for the treatment of solid tumors and hematologic malignancies. This metabolic profiling analysis was conducted as part of a broader phase 1 study evaluating mass balance, pharmacokinetics, metabolism, and routes of excretion of alisertib following a single 35-mg dose of [14C]alisertib oral solution (∼80 µCi) in three patients with advanced malignancies. On average, 87.8% and 2.7% of the administered dose was recovered in feces and urine, respectively, for a total recovery of 90.5% by 14 days postdose. Unchanged [14C]alisertib was the predominant drug-related component in plasma, followed by O-desmethyl alisertib (M2), and alisertib acyl glucuronide (M1), which were present at 47.8%, 34.6%, and 12.0% of total plasma radioactivity. In urine, of the 2.7% of the dose excreted, unchanged [14C]alisertib was a negligible component (trace), with M1 (0.84% of dose) and glucuronide conjugate of hydroxy alisertib (M9; 0.66% of dose) representing the primary drug-related components in urine. Hydroxy alisertib (M3; 20.8% of the dose administered) and unchanged [14C]alisertib (26.3% of the dose administered) were the major drug-related components in feces. In vitro, oxidative metabolism of alisertib was primarily mediated by CYP3A. The acyl glucuronidation of alisertib was primarily mediated by uridine 5'-diphospho-glucuronosyltransferase 1A1, 1A3, and 1A8 and was stable in 0.1 M phosphate buffer and in plasma and urine. Further in vitro evaluation of alisertib and its metabolites M1 and M2 for cytochrome P450-based drug-drug interaction (DDI) showed minimal potential for perpetrating DDI with coadministered drugs. Overall, renal elimination played an insignificant role in the disposition of alisertib, and metabolites resulting from phase 1 oxidative pathways contributed to >58% of the alisertib dose recovered in urine and feces over 192 hours postdose. SIGNIFICANCE STATEMENT: This study describes the primary clearance pathways of alisertib and illustrates the value of timely conduct of human absorption, distribution, metabolism, and excretion studies in providing guidance to the clinical pharmacology development program for oncology drugs, for which a careful understanding of sources of exposure variability is crucial to inform risk management for drug-drug interactions given the generally limited therapeutic window for anticancer drugs and polypharmacy that is common in cancer patients.


Assuntos
Aurora Quinase A/metabolismo , Azepinas/metabolismo , Biotransformação/fisiologia , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Administração Oral , Idoso , Antineoplásicos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Fezes , Feminino , Glucuronídeos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
5.
Acta Pharm Sin B ; 9(5): 1035-1049, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31649852

RESUMO

Managing the dysregulated host response to infection remains a major challenge in sepsis care. Chinese treatment guideline recommends adding XueBiJing, a five-herb medicine, to antibiotic-based sepsis care. Although adding XueBiJing further reduced 28-day mortality via modulating the host response, pharmacokinetic herb-drug interaction is a widely recognized issue that needs to be studied. Building on our earlier systematic chemical and human pharmacokinetic investigations of XueBiJing, we evaluated the degree of pharmacokinetic compatibility for XueBiJing/antibiotic combination based on mechanistic evidence of interaction risk. Considering both XueBiJing‒antibiotic and antibiotic‒XueBiJing interaction potential, we integrated informatics-based approach with experimental approach and developed a compound pair-based method for data processing. To reflect clinical reality, we selected for study XueBiJing compounds bioavailable for drug interactions and 45 antibiotics commonly used in sepsis care in China. Based on the data of interacting with drug metabolizing enzymes and transporters, no XueBiJing compound could pair, as perpetrator, with the antibiotics. Although some antibiotics could, due to their inhibition of uridine 5'-diphosphoglucuronosyltransferase 2B15, organic anion transporters 1/2 and/or organic anion-transporting polypeptide 1B3, pair with senkyunolide I, tanshinol and salvianolic acid B, the potential interactions (resulting in increased exposure) are likely desirable due to these XueBiJing compounds' low baseline exposure levels. Inhibition of aldehyde dehydrogenase by 7 antibiotics probably results in undesirable reduction of exposure to protocatechuic acid from XueBiJing. Collectively, XueBiJing/antibiotic combination exhibited a high degree of pharmacokinetic compatibility at clinically relevant doses. The methodology developed can be applied to investigate other drug combinations.

6.
J Mass Spectrom ; 54(2): 158-166, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30537107

RESUMO

Reactive metabolites are thought to play a pivotal role in the pathogenesis of some drug-induced liver injury (DILI) and idiosyncratic adverse drug reactions (IADRs), which is of concern to patient safety and has been a cause of drugs being withdrawn from the market place. To identify drugs with a lower propensity for causing DILI and/or IADRs, high-throughput assays to capture reactive metabolites are required in pharmaceutical industry for early drug discovery risk assessment. We describe the development of an assay to detect glutathione adducts with combined high sensitivity, enhanced specificity, and rapid data analysis. In this assay, compounds were incubated with human liver microsomes and a mixture of 1:1 of GSH (γ-GluCysGly): GSX(γ-GluCysGly-13 C2 15 N) in a 96-well plate format. UPLC-UV and LTQ Orbitrap XL were employed to detect GSH-adducts using the following mass spectrometry setups: (a) selected ion monitoring (SIM) at m/z of 274 ± 3 Da in negative mode with in-source fragmentation (SCID), which enables simultaneously monitoring two characteristic product ions of m/z 272.0888 (γ-glutamyl-dehydroalanyl-glycine) and 275.0926 (γ-glutamyl-dehydroalanyl-glycine-13 C2 15 N); (b) full scan mode for acquisition of exact mass of glutathione adducts; (c) data-dependent MS2 scan through isotopic matching (M:M + 3.00375 = 1:1) for monitoring neutral loss fragments (144 Da from dehydroalanyl-glycine) and for structural information of glutathione adducts. This approach was qualified using eight compounds known to form GSH conjugates as reported in the literature. The high sensitivity and specificity were demonstrated in identifying unique CysGly adducts in the case of clozapine, diclofenac, and raloxifene and in identifying GSH-adducts of fragmented parent molecules in the case of amodiaquine and troglitazone. In addition, LC-UV chromatograms in the presence or absence of GSH/GSX allowed for identification of the rearranged glutathione adducts without aforementioned characteristic fragment ions. Implement of this assay in drug discovery small molecule programs has successfully guided drug design.


Assuntos
Glutationa/análise , Cromatografia Líquida de Alta Pressão , Glutationa/análogos & derivados , Glutationa/química , Ensaios de Triagem em Larga Escala/métodos , Humanos , Espectrometria de Massas/métodos , Microssomos Hepáticos/química , Sensibilidade e Especificidade
7.
J Cancer ; 9(20): 3647-3650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405832

RESUMO

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers in China. Recently, a study identified that cullin 3 (CUL3) was significantly mutated and deleted in ESCC. We then hypothesis that germline variants in CUL3 may also associated with the susceptibility of ESCC. Variants in the gene 3'-untranslated region (3'-UTR) may associate with gene expression by altering miRNAs binding. Material and Methods: We systematically searched for variants in the 3'-UTR of CUL3 using the Ensembl database. Taqman SNP Genotyping Assay was performed in 638 ESCC cases and 546 controls to examine the association between the rs2396092 and the risk of ESCC. The eQTL analysis for CUL3 were conducted by using the GTEx database. Results: We identified that the rs2396092 was significantly associated with the susceptibility of ESCC. Compared with the TT genotype carriers, the CT genotype and CC genotype carriers were correlated with risk of ESCC with odds ratio being 1.33 (95% CI: 1.04-1.70, P=0.0222) and 1.63 (95% CI: 1.07-2.50, P=0.0241), respectively. Different genotypes of rs2396092 was also shown to be correlated with altered CUL3 expression. Conclusion: The results emphasize the importance of CUL3 in the development of ESCC and may contribute to the personalized prevention of this cancer in the future.

8.
Br J Pharmacol ; 175(17): 3486-3503, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29908072

RESUMO

BACKGROUND AND PURPOSE: Intravenous glycyrrhizin, having anti-inflammatory and hepatoprotective properties, is incorporated into the management of liver diseases in China. This investigation was designed to elucidate the molecular mechanism underlying hepatobiliary excretion of glycyrrhizin and to investigate its potential for drug-drug interactions on organic anion-transporting polypeptide (OATP)1B. EXPERIMENTAL APPROACH: Human transporters mediating hepatobiliary excretion of glycyrrhizin were characterized at the cellular and vesicular levels and compared with rat hepatic transporters. The role of Oatp1b2 in glycyrrhizin's elimination and pharmacokinetics was evaluated in rats using the inhibitor rifampin. A physiologically based pharmacokinetic (PBPK) model for glycyrrhizin, incorporating transporter-mediated hepatobiliary excretion, was established and applied to predict potential drug-drug interactions related to glycyrrhizin in humans. KEY RESULTS: Hepatobiliary excretion of glycyrrhizin involved human OATP1B1/1B3 (Oatp1b2 in rats)-mediated hepatic uptake from blood and human multidrug resistance-associated protein (MRP)2/breast cancer resistance protein (ABCP)/bile salt export pump (BSEP)/multidrug resistance protein 1 (Mrp2/Abcp/Bsep in rats)-mediated hepatic efflux into bile. In rats, rifampin impaired hepatic uptake of glycyrrhizin significantly increasing its systemic exposure. Glomerular-filtration-based renal excretion of glycyrrhizin was slow due to extensive protein binding in plasma. Quantitative analysis using the PBPK model demonstrated that OATP1B1/1B3 have critical roles in the pharmacokinetics of glycyrrhizin, which is highly likely to be a victim of drug-drug interactions when co-administered with potent dual inhibitors of these transporters. CONCLUSIONS AND IMPLICATIONS: Transporter-mediated hepatobiliary excretion governs glycyrrhizin's elimination and pharmacokinetics. Understanding glycyrrhizin's potential drug-drug interactions on OATP1B1/1B3 should enhance the therapeutic outcome of glycyrrhizin-containing drug combinations on liver diseases.


Assuntos
Ácido Glicirrízico/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Fígado/efeitos dos fármacos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Animais , Células Cultivadas , Interações Medicamentosas , Ácido Glicirrízico/farmacocinética , Células HEK293 , Humanos , Funções Verossimilhança , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Ratos , Ratos Sprague-Dawley
9.
J Pharm Sci ; 107(4): 979-983, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29247736

RESUMO

Icotinib is the first self-developed small molecule drug in China for targeted therapy of non-small cell lung cancer. To date, systematic studies on the pharmacokinetic drug-drug interaction of icotinib were limited. By identifying metabolite generated in human liver microsomes and revealing the contributions of major cytochromes P450 (CYPs) in the formation of major metabolites, the aim of the present work was to understand the mechanisms underlying pharmacokinetic and pharmacological variability in clinic. A liquid chromatography/UV/high-resolution mass spectrometer method was developed to characterize the icotinib metabolites. The formation of 6 major metabolites was studied in recombinant CYP isozymes and human liver microsomes with specific inhibitors to identify the CYPs responsible for icotinib metabolism. The metabolic pathways observed in vitro are consistent with those observed in human. Results demonstrated that the metabolites are predominantly catalyzed by CYP3A4 (77%∼87%), with a moderate contribution from CYP3A5 (5%∼15%) and CYP1A2 (3.7%∼7.5%). The contribution of CYP2C8, 2C9, 2C19, and 2D6 is insignificant. Based on our observations, to minimize drug-drug interaction risk in clinic, coprescription of icotinib with strong CYP3A inhibitors or inducers must be weighed. CYP1A2, a highly inducible enzyme in the smoking population, may also represent a determinant of pharmacokinetic and pharmacological variability of icotinib, especially in lung cancer patients with smoking history.


Assuntos
Éteres de Coroa/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas/fisiologia , Redes e Vias Metabólicas/fisiologia , Quinazolinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Éteres de Coroa/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Microssomos Hepáticos/metabolismo , Quinazolinas/farmacocinética
10.
Pharmacogenet Genomics ; 27(4): 125-134, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28099407

RESUMO

BACKGROUND AND OBJECTIVES: Pioglitazone is a thiazolidinedione antihyperglycemic drug with insulin-sensitizing properties. We investigated whether the variant genotypes of cytochrome P450 2C8 (CYP2C8), CYP2C9, CYP3A5 and transporter ABCB1 influence the pharmacokinetic phenotype of the substrate pioglitazone in Chinese individuals. PARTICIPANTS AND METHODS: Single-nucleotide polymorphisms were determined by the PCR-restriction fragment length polymorphism method in 244 (CYP2C8 and CYP2C9) healthy Chinese Han individuals. After a single oral dose of 30 mg pioglitazone, the plasma concentrations of the parent drug and of two major active metabolites M-III and M-IV were measured using a validated LC-MS/MS in 21 (genotyping CYP3A5 and ABCB1) of these 244 volunteers. RESULTS: The results confirmed that the unique frequencies of CYP2C8*2 (0.0%), CYP2C8*3 (0.0%), and CYP2C9*2 (0.0%) alleles were significantly different from those reported in Whites and Africans, and there were only 10 variant CYP2C9*1/*3 heterozygous (CYP2C9*3 carriers) among 244 Chinese individuals. These results were similar to those reported in Asian ethnic populations, including the Chinese. Unexpectedly, the pioglitazone AUC0-48 in CYP2C9*3 carriers was lower (50.8%), whereas the AUC0-48 ratios of metabolites M-III/pioglitazone and M-IV/pioglitazone increased to 134.3 and 155.8%, respectively, compared with the wild-type CYP2C9*1/*1 homozygous. Moreover, this phenomenon was not observed in individuals with genetic variants of CYP3A5*3 and ABCB1 (C1236T). CONCLUSION: The present research suggests that the CYP2C8, CYP3A5, and ABCB1 genes play no significant role in the interindividual variation of pioglitazone pharmacokinetics, whereas CYP2C9*3 carriers are likely to accelerate the metabolism of this antidiabetic drug in the Chinese Han ethnic population.


Assuntos
Povo Asiático/genética , Redes Reguladoras de Genes , Hipoglicemiantes/administração & dosagem , Polimorfismo de Nucleotídeo Único , Tiazolidinedionas/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Administração Oral , Adulto , Povo Asiático/etnologia , China/etnologia , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/genética , Feminino , Genótipo , Humanos , Hipoglicemiantes/farmacocinética , Masculino , Variantes Farmacogenômicos , Pioglitazona , Tiazolidinedionas/farmacocinética , Adulto Jovem
11.
Biochem Pharmacol ; 121: 67-77, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27666601

RESUMO

Icotinib (ICO), a novel small molecule and a tyrosine kinase inhibitor, was developed and approved recently in China for non-small cell lung cancer. During screening for CYP inhibition potential in human liver microsomes (HLM), heterotropic activation toward CYP3A5 was revealed. Activation by icotinib was observed with CYP3A-mediated midazolam hydroxylase activity in HLM (∼40% over the baseline) or recombinant human CYP3A5 (rhCYP3A5) (∼70% over the baseline), but not in the other major CYPs including rhCYP3A4. When co-incubated with selective CYP3A4 inhibitor CYP3cide or monoclonal human CYP3A4 inhibitory antibody in HLM, the activation was extended to ∼60%, suggesting CYP3A5 might be the isozyme involved. Further, the relative activation was enhanced to ∼270% in rhCYP3A5 in the presence of ketoconazole. The activation was substrate and pathway dependent and observed only in the formation of 1'-OH-midazolam, and not 4-OH-midazolam, 6ß-OH-testosterone, or oxidized nifedipine. The activation requires the presence of cytochrome b5 and it is only observed in the liver microsomes of dogs, monkeys, and humans, but not in rats and mice. Kinetic analyses of 1'-OH-midazolam formation showed that ICO increased the Vmax values in HLM and rhCYP3A5 with no significant changes in Km values. By adding CYP3cide with ICO to the incubation, the Vmax values increased 2-fold over the CYP3cide control. Addition of ketoconazole with ICO alone or ICO plus CYP3cide resulted in an increase in Vmax values and decrease in Km values compared to their controls. This phenomenon may be attributed to a new mechanism of CYP3A5 heterotropic activation, which warrants further investigation.


Assuntos
Antineoplásicos/farmacologia , Éteres de Coroa/farmacologia , Citocromo P-450 CYP3A/metabolismo , Cetoconazol/farmacologia , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , Quinazolinas/farmacologia , Regulação Alostérica , Animais , Antineoplásicos/metabolismo , Éteres de Coroa/metabolismo , Cães , Relação Dose-Resposta a Droga , Interações Medicamentosas , Haplorrinos , Humanos , Técnicas In Vitro , Cetoconazol/metabolismo , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Quinazolinas/metabolismo , Ratos , Especificidade da Espécie , Especificidade por Substrato
12.
Sci Rep ; 6: 28116, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27311637

RESUMO

Constitutive androstane receptor (CAR) regulates hepatic xenobiotic and energy metabolism, as well as promotes cell growth and hepatocarcinogenesis. Berberine is an ancient multipotent alkaloid drug which derived from Coptis chinensis plants. Here we report that berberine is able to be cellular uptake and accessible to chromatin in human hepatoma HepG2 cells. Berberine induces more apoptosis, cell cycle arrest, but less ROS production in CAR overexpressed mCAR-HepG2 cells. Moreover, berberine inhibits expressions of CAR and its target genes CYP2B6 and CYP3A4. Furthermore, berberine enhances DNA methylation level in whole genome but reduces that in promoter regions CpG sites of CYP2B6 and CYP3A4 genes under the presence of CAR condition. These results indicated that the antiproliferation of berberine might be mediated by the unique epigenetic modifying mechanism of CAR metabolic pathway, suggesting that berberine is a promising candidate in anticancer adjuvant chemotherapy, due to its distinct pharmacological properties in clinic.


Assuntos
Antineoplásicos/farmacologia , Berberina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/biossíntese , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6/biossíntese , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/biossíntese , Citocromo P-450 CYP3A/genética , Metilação de DNA/genética , Epigênese Genética , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
13.
World J Gastroenterol ; 22(22): 5254-9, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27298568

RESUMO

AIM: To detect the expression of the long noncoding RNA HOTAIR in colon cancer and analyze its relationship with clinicopathological parameters of colon cancer. METHODS: Total RNA was extracted from 80 colon cancer tissues and matched tumor-adjacent normal colon tissues and reverse transcribed. Quantitative polymerase chain reaction was used to detect the expression of HOTAIR. The relationship between the expression of HOTAIR and clinicopathological parameters of colon cancer was analyzed. RESULTS: The expression of HOTAIR was significantly higher in colon cancer tissues than in matched tumor-adjacent normal colon tissues (P < 0.05). HOTAIR expression was significantly higher in cases with lymph node metastasis than in those without metastasis; in lowly differentiated and undifferentiated cases than in highly and moderately differentiated cases; and in stages III + IV cases than in stages I + II cases (P < 0.05). CONCLUSION: HOTAIR expression is upregulated in colon cancer, suggesting that HOTAIR plays an important role in the tumorigenesis, development and metastasis of colon cancer. HOTAIR may act as an oncogene and represents a new molecular target for the treatment of colon cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , RNA Longo não Codificante/genética , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Retrospectivos , Regulação para Cima
14.
Sci Rep ; 5: 11906, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148672

RESUMO

Fructose-based 3-acetyl-2,3-dihydro-1,3,4-oxadiazole (GLB) is a novel antitumor agent and belongs to glycosylated spiro-heterocyclic oxadiazole scaffold derivative. This research first reported a simple, specific, sensitive and stable high performance liquid chromatography-ultraviolet detector (HPLC-UV) method for the quantitative determination of GLB in plasma. In this method, the chromatographic separation was achieved with a reversed phase C18 column. The calibration curve for GLB was linear at 300 nm. The lower limit of quantification was 10 ng/mL. The precision, accuracy and stability of the method were validated adequately. This method was successfully applied to the pharmacokinetic study in rats for detection of GLB after oral administration. Moreover, the structures of parent compound GLB and its two major metabolites M1 and M2 were identified in plasma using an ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight- mass spectrometry (UPLC-ESI-QTOF-MS) method. Our results indicated that the di-hydroxylation (M1) and hydroxylation (M2) of GLB are the major metabolites. In conclusion, the present study provided valuable information on an analytical method for the determination of GLB and its metabolites in rats, can be used to support further developing of this antitumor agent.


Assuntos
Antineoplásicos/sangue , Cromatografia Líquida de Alta Pressão , Oxidiazóis/sangue , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Calibragem , Cromatografia Líquida de Alta Pressão/normas , Meia-Vida , Hidroxilação , Masculino , Oxidiazóis/química , Oxidiazóis/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
15.
Biopharm Drug Dispos ; 35(9): 543-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25264242

RESUMO

Orteronel is a nonsteroidal, selective inhibitor of 17,20-lyase that was recently in phase 3 clinical development as a treatment for castration-resistant prostate cancer. In humans, the primary clearance route for orteronel is renal excretion. Human liver microsomal studies indicated that orteronel weakly inhibits CYP1A2, 2C8, 2C9 and 2C19, with IC50 values of 17.8, 27.7, 30.8 and 38.8 µm, respectively, whereas orteronel does not inhibit CYP2B6, 2D6 or 3A4/5 (IC50 > 100 µm). Orteronel also does not exhibit time-dependent inhibition of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 or 3A4/5. The results of a static model indicated an [I]/Ki ratio >0.1 for CYP1A2, 2C8, 2C9 and 2C19. Therefore, a physiologically based pharmacokinetic (PBPK) model was developed to assess the potential for drug-drug interactions (DDIs) between orteronel and theophylline, repaglinide, (S)-warfarin and omeprazole, which are sensitive substrates of CYP1A2, 2C8, 2C9 and 2C19, respectively. Simulation of the area under the plasma concentration-time curve (AUC) of these four CYP substrates in the presence and absence of orteronel revealed geometric mean AUC ratios <1.25. Therefore, in accordance with the 2012 US FDA Draft Guidance on DDIs, orteronel can be labeled a 'non-inhibitor' and further clinical DDI evaluation is not required. In PBPK models of moderate and severe renal impairment, the AUC of orteronel was predicted to increase by 52% and 83%, respectively. These results are in agreement with those of a clinical trial in which AUC increases of 38% and 87% were observed in patients with moderate and severe renal impairment, respectively.


Assuntos
Antineoplásicos/farmacocinética , Simulação por Computador , Sistema Enzimático do Citocromo P-450/metabolismo , Imidazóis/farmacocinética , Modelos Biológicos , Naftalenos/farmacocinética , Insuficiência Renal/metabolismo , Absorção Fisiológica , Idoso , Antineoplásicos/sangue , Antineoplásicos/química , Interações Medicamentosas , Humanos , Imidazóis/sangue , Imidazóis/química , Taxa de Depuração Metabólica , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Estrutura Molecular , Peso Molecular , Naftalenos/sangue , Naftalenos/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Valor Preditivo dos Testes , Insuficiência Renal/enzimologia , Especificidade por Substrato
16.
Eur J Pharm Biopharm ; 88(3): 759-67, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24980806

RESUMO

Ginkgolic acids (GAs) in natural product Ginkgobiloba L. are the pharmacological active but also toxic components. Two compounds, GA (C15:1) and GA (C17:1) are the most abundant GAs. In this study, several in vitro and in vivo models were applied to investigate transport mechanism of GAs. A rapid and sensitive LC-MS/MS method for the simultaneous determination of GA (C15:1) and GA (C17:1) was applied to analyze the biological specimens. The Papp(AP→BL) values of GA (C15:1) and GA (C17:1) were 1.66-2.13×10(-)(6)cm/s and 1.34-1.85×10(-)(6)cm/s determined using MDCK and MDCK-MDR1 cell monolayers, respectively. The Papp(BL→AP) were remarkably greater in the MDCK-MDR1 cell line, which were 6.77-11.2×10(-)(6)cm/s for GA (C15:1) and 4.73-5.15×10(-)(6)cm/s for GA (C17:1). Similar results were obtained in LLC-PK1 and LLC-PK1-BCRP cell monolayers. The net efflux ratio of GA (C15:1) and GA (C17:1) in both cell models was greater than 2 and markedly reduced by the presence of Cyclosporin A (CsA) or GF120918, inhibitors of P-gp and BCRP, suggesting that GAs are P-gp and BCRP substrates. The results from a rat bioavailability study also showed that co-administrating CsA intravenously (20mg/kg) could significantly increase GA (C15:1) and GA (C17:1) AUC0-t by 1.46-fold and 1.53-fold and brain concentration levels of 1.43-fold and 1.51-fold, respectively, due to the inhibition of P-gp and BCRP efflux transporters by CsA.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Ciclosporina/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Salicilatos/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Disponibilidade Biológica , Transporte Biológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Cães , Células LLC-PK1 , Células Madin Darby de Rim Canino , Masculino , Proteínas de Neoplasias/genética , Ratos Sprague-Dawley , Salicilatos/sangue , Salicilatos/toxicidade , Especificidade por Substrato , Suínos , Distribuição Tecidual , Transfecção
17.
Drug Metab Lett ; 7(2): 96-104, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24484538

RESUMO

Alisertib (MLN8237) is an investigational potent Aurora A kinase inhibitor currently under clinical trials for hematological and nonhematological malignancies. Nonclinical investigation showed that alisertib is a highly permeable compound with high plasma protein binding, low plasma clearance, and moderate volume of distribution in rats, dogs, monkeys and chimpanzees. Consistent with the above properties, the oral bioavailability in animals was greater than 82%. The predicted human oral pharmacokinetic (PK) profile was constructed using allometric scaling of plasma clearance and volume of distribution in the terminal phase from animals. The chimpanzee PK profiles were extremely useful to model absorption rate constant, which was assumed to be similar to that in humans, based on the fact that chimpanzees are phylogenetically closest to humans. The human plasma clearance was projected to be low of 0.12 L/hr/kg, with half-life of approximately 10 hr. For human efficacious dose estimation, the tumor growth inhibition as a measure of efficacy (E) was assessed in HCT116 xenograft mice at several oral QD or BID dose levels. Additionally, subcutaneous mini-pump infusion studies were conducted to assess mitotic index in tumor samples as a pharmacodynamic (PD) marker. PK/PD/E modeling showed that for optimal efficacy and PD in the xenograft mice maintaining a plasma concentration exceeding 1 µM for at least 8-12 hr would be required. These values in conjunction with the projected human PK profile estimated the optimal oral dose of approximately 103 mg QD or 62.4 mg BID in humans. Notably, the recommended Phase 2 dose being pursued in the clinic is close to the projected BID dose.


Assuntos
Antineoplásicos/farmacocinética , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacocinética , Cálculos da Dosagem de Medicamento , Avaliação Pré-Clínica de Medicamentos , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/farmacocinética , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Aurora Quinase A/metabolismo , Azepinas/administração & dosagem , Azepinas/sangue , Células CACO-2 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Cães , Feminino , Células HCT116 , Meia-Vida , Humanos , Infusões Subcutâneas , Fígado/metabolismo , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica , Camundongos Nus , Modelos Animais , Pan troglodytes , Ligação Proteica , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/sangue , Pirimidinas/administração & dosagem , Pirimidinas/sangue , Ratos Sprague-Dawley , Especificidade da Espécie , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Drug Metab Dispos ; 41(12): 2158-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24065861

RESUMO

Triptolide (TP), a main bioactive component of Tripterygium wilfordii Hook F., is a promising agent for treatment of autoimmune diseases. However, a high incidence of dose-limiting hepatotoxicity was observed in the clinic. Sandwich-cultured rat hepatocyte model was used in this study to identify the involvement of P-glycoprotein (P-gp) in TP disposition and to evaluate TP-induced hepatotoxicity after modulation of P-gp by the known inhibitors, ritonavir and tariquidar, and known inducers, phenobarbital, quercetin, and H(2)O(2). Our data showed that biliary clearance of TP reduced 73.7% and 84.2% upon treatment of ritonavir (25 µM) and tariquidar (5 µM), respectively. In contrast, increases of 346%, 280%, and 273% in biliary clearance of TP were observed with treatment of phenobarbital (1.0 mM), quercetin (20 µM), and H(2)O(2) (0.5 mM), respectively. The TP-induced hepatotoxicity increased by twofold when CYP activity was blocked by 1-aminobenzotriazole, suggesting that CYP and P-gp may both contribute to the detoxification of TP in the SCRH model. In addition, hepatotoxicity and the expression of apoptosis proteins Bax and Bcl-2 were correlated qualitatively with the TP exposure duration and its intracellular concentration, which, in turn, can be modulated by P-gp inhibitors or inducers. Our results for the first time demonstrated that in addition to CYP-mediated metabolism, P-gp also plays an important role in the disposition of TP and TP-induced hepatotoxicity. Thus, the modulation of canalicular P-gp has a potential to cause drug-drug interaction between TP and the coadministered P-gp inhibitors or inducers in the clinic.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/farmacologia , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Fenantrenos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Citocromo P-450 CYP3A/metabolismo , Compostos de Epóxi/farmacologia , Hepatócitos/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Fígado/enzimologia , Fígado/metabolismo , Masculino , Fenobarbital/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quercetina/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ritonavir/farmacologia , Proteína X Associada a bcl-2/metabolismo
19.
Virol J ; 8: 557, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22188676

RESUMO

BACKGROUND: Bovine adenovirus type 3 (BAV-3) belongs to the Mastadenovirus genus of the family Adenoviridae and is involved in respiratory and enteric infections of calves. The isolation of BAV-3 has not been reported prior to this study in China. In 2009, there were many cases in cattle showing similar clinical signs to BAV-3 infection and a virus strain, showing cytopathic effect in Madin-Darby bovine kidney cells, was isolated from a bovine nasal swab collected from feedlot cattle in Heilongjiang Province, China. The isolate was confirmed as a bovine adenovirus type 3 by PCR and immunofluorescence assay, and named as HLJ0955. So far only the complete genome sequence of prototype of BAV-3 WBR-1 strain has been reported. In order to further characterize the Chinese isolate HLJ0955, the complete genome sequence of HLJ0955 was determined. RESULTS: The size of the genome of the Chinese isolate HLJ0955 is 34,132 nucleotides in length with a G+C content of 53.6%. The coding sequences for gene regions of HLJ0955 isolate were similar to the prototype of BAV-3 WBR-1 strain, with 80.0-98.6% nucleotide and 87.5-98.8% amino acid identities. The genome of HLJ0955 strain contains 16 regions and four deletions in inverted terminal repeats, E1B region and E4 region, respectively. The complete genome and DNA binding protein gene based phylogenetic analysis with other adenoviruses were performed and the results showed that HLJ0955 isolate belonged to BAV-3 and clustered within the Mastadenovirus genus of the family Adenoviridae. CONCLUSIONS: This is the first study to report the isolation and molecular characterization of BAV-3 from cattle in China. The phylogenetic analysis performed in this study supported the use of the DNA binding protein gene of adenovirus as an appropriate subgenomic target for the classification of different genuses of the family Adenoviridae on the molecular basis. Meanwhile, a large-scale pathogen and serological epidemiological investigations for BVA-3 infection might be carried out in cattle in China. This report will be a good beginning for further studies on BAV-3 in China.


Assuntos
Infecções por Adenoviridae/veterinária , Doenças dos Bovinos/virologia , DNA Viral/genética , Genoma Viral , Mastadenovirus/genética , Proteínas Virais/genética , Infecções por Adenoviridae/virologia , Animais , Composição de Bases , Bovinos , China , Mapeamento Cromossômico , Proteínas de Ligação a DNA , Tamanho do Genoma , Sequências Repetidas Invertidas , Mastadenovirus/classificação , Mastadenovirus/isolamento & purificação , Fases de Leitura Aberta , Filogenia
20.
Carcinogenesis ; 31(7): 1211-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20430845

RESUMO

Hepatocellular carcinoma (HCC) is a typical hypervascular tumor, and increased levels of vascular endothelial growth factor (VEGF) are associated with progression of HCC. Tumor suppression gene PTEN (phosphatase and tensin homolog deleted on chromosome 10), an important antagonist of the phosphoinositide-3-kinase (PI3K)/adenosine triphosphate-dependent tyrosine kinase (Akt) pathway, is also commonly lost or mutated in HCC. However, the effect of PTEN on VEGF-mediated angiogenesis in HCC remains unknown. To explore this relationship, we expressed a panel of PTEN mutants in human HCC cells with low expression of PTEN (HepG2 cells). Overexpression of PTEN in HepG2 cells resulted in the downregulation of proliferation and migration of cocultured endothelial cells and decreased expression of hypoxia-inducible factor 1 (HIF-1) and VEGF. Similarly, using a nude mouse model, we demonstrated that PTEN decreased expression of HIF-1 and VEGF and suppressed HepG2-induced angiogenesis. This inhibitory effect was not observed in cells expressing a phosphatase-deficient PTEN mutant, suggesting that PTEN inhibits angiogenesis and VEGF through a phosphatase-dependent pathway. Strikingly, reintroducing the C2 domain of PTEN also resulted in a significant decrease in angiogenesis and VEGF expression, although it did not affect Akt phosphorylation or HIF-1 expression. In summary, this study suggests the novel viewpoint that PTEN suppresses angiogenesis and VEGF expression in HCC through both phosphatase-dependent and -independent mechanisms.


Assuntos
Carcinoma Hepatocelular/irrigação sanguínea , Neoplasias Hepáticas/irrigação sanguínea , Neovascularização Patológica/prevenção & controle , PTEN Fosfo-Hidrolase/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , RNA Mensageiro/análise , Fator A de Crescimento do Endotélio Vascular/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA