Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 93: 103095, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310678

RESUMO

Segmenting prostate from magnetic resonance imaging (MRI) is a critical procedure in prostate cancer staging and treatment planning. Considering the nature of labeled data scarcity for medical images, semi-supervised learning (SSL) becomes an appealing solution since it can simultaneously exploit limited labeled data and a large amount of unlabeled data. However, SSL relies on the assumption that the unlabeled images are abundant, which may not be satisfied when the local institute has limited image collection capabilities. An intuitive solution is to seek support from other centers to enrich the unlabeled image pool. However, this further introduces data heterogeneity, which can impede SSL that works under identical data distribution with certain model assumptions. Aiming at this under-explored yet valuable scenario, in this work, we propose a separated collaborative learning (SCL) framework for semi-supervised prostate segmentation with multi-site unlabeled MRI data. Specifically, on top of the teacher-student framework, SCL exploits multi-site unlabeled data by: (i) Local learning, which advocates local distribution fitting, including the pseudo label learning that reinforces confirmation of low-entropy easy regions and the cyclic propagated real label learning that leverages class prototypes to regularize the distribution of intra-class features; (ii) External multi-site learning, which aims to robustly mine informative clues from external data, mainly including the local-support category mutual dependence learning, which takes the spirit that mutual information can effectively measure the amount of information shared by two variables even from different domains, and the stability learning under strong adversarial perturbations to enhance robustness to heterogeneity. Extensive experiments on prostate MRI data from six different clinical centers show that our method can effectively generalize SSL on multi-site unlabeled data and significantly outperform other semi-supervised segmentation methods. Besides, we validate the extensibility of our method on the multi-class cardiac MRI segmentation task with data from four different clinical centers.


Assuntos
Práticas Interdisciplinares , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Entropia , Imageamento por Ressonância Magnética
2.
Med Image Anal ; 88: 102880, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37413792

RESUMO

Semi-supervised learning has greatly advanced medical image segmentation since it effectively alleviates the need of acquiring abundant annotations from experts, wherein the mean-teacher model, known as a milestone of perturbed consistency learning, commonly serves as a standard and simple baseline. Inherently, learning from consistency can be regarded as learning from stability under perturbations. Recent improvement leans toward more complex consistency learning frameworks, yet, little attention is paid to the consistency target selection. Considering that the ambiguous regions from unlabeled data contain more informative complementary clues, in this paper, we improve the mean-teacher model to a novel ambiguity-consensus mean-teacher (AC-MT) model. Particularly, we comprehensively introduce and benchmark a family of plug-and-play strategies for ambiguous target selection from the perspectives of entropy, model uncertainty and label noise self-identification, respectively. Then, the estimated ambiguity map is incorporated into the consistency loss to encourage consensus between the two models' predictions in these informative regions. In essence, our AC-MT aims to find out the most worthwhile voxel-wise targets from the unlabeled data, and the model especially learns from the perturbed stability of these informative regions. The proposed methods are extensively evaluated on left atrium segmentation and brain tumor segmentation. Encouragingly, our strategies bring substantial improvement over recent state-of-the-art methods. The ablation study further demonstrates our hypothesis and shows impressive results under various extreme annotation conditions.


Assuntos
Benchmarking , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Consenso , Entropia , Átrios do Coração , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
3.
IEEE J Biomed Health Inform ; 26(7): 3174-3184, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35324450

RESUMO

Semi-supervised learning has substantially advanced medical image segmentation since it alleviates the heavy burden of acquiring the costly expert-examined annotations. Especially, the consistency-based approaches have attracted more attention for their superior performance, wherein the real labels are only utilized to supervise their paired images via supervised loss while the unlabeled images are exploited by enforcing the perturbation-based "unsupervised" consistency without explicit guidance from those real labels. However, intuitively, the expert-examined real labels contain more reliable supervision signals. Observing this, we ask an unexplored but interesting question: can we exploit the unlabeled data via explicit real label supervision for semi-supervised training? To this end, we discard the previous perturbation-based consistency but absorb the essence of non-parametric prototype learning. Based on the prototypical networks, we then propose a novel cyclic prototype consistency learning (CPCL) framework, which is constructed by a labeled-to-unlabeled (L2U) prototypical forward process and an unlabeled-to-labeled (U2L) backward process. Such two processes synergistically enhance the segmentation network by encouraging morediscriminative and compact features. In this way, our framework turns previous "unsupervised" consistency into new "supervised" consistency, obtaining the "all-around real label supervision" property of our method. Extensive experiments on brain tumor segmentation from MRI and kidney segmentation from CT images show that our CPCL can effectively exploit the unlabeled data and outperform other state-of-the-art semi-supervised medical image segmentation methods.


Assuntos
Neoplasias Encefálicas , Aprendizado de Máquina Supervisionado , Humanos , Rim , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA