RESUMO
The steroid receptor coactivator-1 (SRC-1) is a nuclear receptor co-activator, known to play key roles in both estrogen response in bone and in breast cancer metastases. We previously demonstrated that the P1272S single nucleotide polymorphism (SNP; P1272S; rs1804645) in SRC-1 decreases the activity of estrogen receptor in the presence of selective estrogen receptor modulators (SERMs) and that it is associated with a decrease in bone mineral density (BMD) after tamoxifen therapy, suggesting it may disrupt the agonist action of tamoxifen. Given such dual roles of SRC-1 in the bone microenvironment and in tumor cell-intrinsic phenotypes, we hypothesized that SRC-1 and a naturally occurring genetic variant, P1272S, may promote breast cancer bone metastases. We developed a syngeneic, knock-in mouse model to study if the SRC-1 SNP is critical for normal bone homeostasis and bone metastasis. Our data surprisingly reveal that the homozygous SRC-1 SNP knock-in increases tamoxifen-induced bone protection after ovariectomy. The presence of the SRC-1 SNP in mammary glands resulted in decreased expression levels of SRC-1 and reduced tumor burden after orthotopic injection of breast cancer cells not bearing the SRC-1 SNP, but increased metastases to the lungs in our syngeneic mouse model. Interestingly, the P1272S SNP identified in a small, exploratory cohort of bone metastases from breast cancer patients was significantly associated with earlier development of bone metastasis. This study demonstrates the importance of the P1272S SNP in both the effect of SERMs on BMD and the development of tumor in the bone.
Assuntos
Adenocarcinoma/secundário , Densidade Óssea/genética , Neoplasias Ósseas/secundário , Neoplasias Mamárias Experimentais/patologia , Coativador 1 de Receptor Nuclear/fisiologia , Adenocarcinoma/genética , Animais , Neoplasias Ósseas/genética , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Técnicas de Introdução de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologiaRESUMO
BACKGROUND: In high-grade chondrosarcoma, 5-year survival is lower than 50%. Therefore, it is important that preclinical models that mimic the disease with the greatest possible fidelity are used to potentially develop new treatments. Accumulating evidence suggests that two-dimensional (2-D) cell culture may not accurately represent the tumor's biology. It has been demonstrated in other cancers that three-dimensional (3-D) cancer cell spheroids may recapitulate tumor biology and response to treatment with greater fidelity than traditional 2-D techniques. To our knowledge, the formation of patient-derived chondrosarcoma spheroids has not been described. QUESTIONS/PURPOSES: (1) Can patient-derived chondrosarcoma spheroids be produced? (2) Do spheroids recapitulate human chondrosarcoma better than 2-D cultures, both morphologically and molecularly? (3) Can chondrosarcoma spheroids provide an accurate model to test novel treatments? METHODS: Experiments to test the feasibility of spheroid formation of chondrosarcoma cells were performed using HT-1080, an established chondrosarcoma cell line, and two patient-derived populations, TP19-S26 and TP19-S115. Cells were cultured in flasks, trypsinized, and seeded into 96-well ultra-low attachment plates with culture media. After spheroids formed, they were monitored daily by bright-field microscopy. Spheroids were fixed using paraformaldehyde and embedded in agarose. After dehydration with isopropanol, paraffin-embedded spheroids were sectioned, and slides were stained with hematoxylin and eosin. To compare differences and similarities in gene expression between 2-D and 3-D chondrosarcoma cultures and primary tumors, and to determine whether these spheroids recapitulated the biology of chondrosarcoma, RNA was extracted from 2-D cultures, spheroids, and tumors. Quantitative polymerase chain reaction was performed to detect chondrosarcoma markers of interest, including vascular endothelial growth factor alpha, hypoxia-inducible factor 1α, COL2A1, and COL10A1. To determine whether 2-D and 3-D cultures responded differently to novel chondrosarcoma treatments, we compared their sensitivities to disulfiram and copper chloride treatment. To test their sensitivity to disulfiram and copper chloride treatment, 10,000 cells were seeded into 96-well plates for 2-D culturing and 3000 cells in each well for 3-D culturing. After treating the cells with disulfiram and copper for 48 hours, we detected cell viability using quantitative presto-blue staining and measured via plate reader. RESULTS: Cell-line and patient-derived spheroids were cultured and monitored over 12 days. Qualitatively, we observed that HT-1080 demonstrated unlimited growth, while TP19-S26 and TP19-S115 contracted during culturing relative to their initial size. Hematoxylin and eosin staining of HT-1080 spheroids revealed that cell-cell attachments were more pronounced at the periphery of the spheroid structure than at the core, while the core was less dense. Spheroids derived from the intermediate-grade chondrosarcoma TP19-S26 were abundant in extracellular matrix, and spheroids derived from the dedifferentiated chondrosarcoma TP19-S115 had a higher cellularity and heterogeneity with spindle cells at the periphery. In the HT-1080 cells, differences in gene expression were appreciated with spheroids demonstrating greater expressions of VEGF-α (1.01 ± 0.16 versus 6.48 ± 0.55; p = 0.003), COL2A1 (1.00 ± 0.10 versus 7.46 ± 2.52; p < 0.001), and COL10A1 (1.01 ± 0.19 versus 22.53 ± 4.91; p < 0.001). Differences in gene expressions were also noted between primary tumors, spheroids, and 2-D cultures in the patient-derived samples TP19-S26 and TP19-S115. TP19-S26 is an intermediate-grade chondrosarcoma. With the numbers we had, we could not detect a difference in VEGF-α and HIF1α gene expression compared with the primary tumor. COL2A1 (1.00 ± 0.14 versus 1.76 ± 0.10 versus 335.66 ± 31.13) and COL10A1 (1.06 ± 0.378 versus 5.98 ± 0.45 versus 138.82 ± 23.4) expressions were both greater in the tumor (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) and 3-D cultures (p (COL2A1) = 0.004; p (COL10A1) < 0.0001) compared with 2-D cultures. We could not demonstrate a difference in VEGF-α and HIF1α expressions in TP19-S115, a dedifferentiated chondrosarcoma, in the tumor compared with 2-D and 3-D cultures. COL2A1 (1.00 ± 0.02 versus 1.86 ± 0.18 versus 2.95 ± 0.56) and COL10A1 (1.00 ± 0.03 versus 5.52 ± 0.66 versus 3.79 ± 0.36) expressions were both greater in spheroids (p (COL2A1) = 0.003; p (COL10A1) < 0.0001) and tumors (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) compared with 2-D cultures. Disulfiram-copper chloride treatment demonstrated high cytotoxicity in HT-1080 and SW-1353 chondrosarcoma cells grown in the 2-D monolayer, but 3-D spheroids were highly resistant to this treatment. CONCLUSION: We provide preliminary findings that it is possible to generate 3-D spheroids from chondrosarcoma cell lines and two human chondrosarcomas (one dedifferentiated chondrosarcoma and one intermediate-grade chondrosarcoma). Chondrosarcoma spheroids derived from human tumors demonstrated morphology more reminiscent of primary tumors than cells grown in 2-D culture. Spheroids displayed similar expressions of cartilage markers as the primary tumor, and we observed a higher expression of collagen markers in the spheroids compared with cells grown in monolayer. Spheroids also demonstrated greater chemotherapy resistance than monolayer cells, but more patient-derived spheroids are needed to further conclude that 3-D cultures may mimic the chemoresistance that chondrosarcomas demonstrate clinically. Additional studies on patient-derived chondrosarcoma spheroids are warranted. CLINICAL RELEVANCE: Chondrosarcomas demonstrate resistance to chemotherapy and radiation, and we believe that if they can be replicated, models such as 3-D spheroids may provide a method to test novel treatments for human chondrosarcoma. Additional comprehensive genomic studies are required to compare 2-D and 3-D models with the primary tumor to determine the most effective way to study this disease in vitro.
Assuntos
Neoplasias Ósseas , Condrossarcoma , Modelos Biológicos , Esferoides Celulares , Células Tumorais Cultivadas , Estudos de Viabilidade , HumanosRESUMO
Cancer-associated cachexia is a wasting syndrome that affects up to 50% of cancer patients. It is defined as unintentional weight loss ≥5% over 6 months and characterized by muscle atrophy, fatigue, and anorexia that are refractory to nutritional support. Sarcoma describes a diverse group of malignancies arising from the connective tissues. Sarcoma patients are uniquely susceptible to cancer-associated cachexia given its origins in the musculoskeletal system. Our previous research suggests that sarcoma cells may contribute to sarcoma-associated cachexia (SAC) via establishment of TNF-α-mediated inflammation and dysregulation of muscle homeostasis by abnormal Notch signaling. Here, we examine the role of the Notch pathway and pro-inflammatory cytokines in cells derived from cachectic and non-cachectic human sarcoma patients. We observed increased expression of Notch pathway genes in the cachexia group while no differences in pro-inflammatory cytokines were observed. Co-culture of muscle-derived stem cells (MDSCs) and sarcoma cells demonstrated the inhibition of MDSC maturation with both cachectic and non-cachectic patient cells, corresponding to elevated Pax7 and Notch pathway expression in MDSCs. Our findings suggest that there is no difference in inflammatory profile between cachexia and non-cachexia sarcoma samples. However, Cachectic sarcoma samples express increased Notch that mediates muscle wasting possibly through inhibition of myogenesis.
RESUMO
Although many cancer cells have significantly higher copper concentrations compared with normal cells and tissues, the role of copper in cancer biology and metastatic disease remains poorly understood. Here, we study the importance of copper in osteosarcoma, which frequently metastasizes to the lungs and is often chemoresistant. K12 and K7M2 are murine OS cells with differing metastatic phenotypes: K7M2 is highly metastatic, whereas K12 is much less so. Intracellular copper levels were determined using atomic absorption. Copper transporters were quantified by qPCR. Cytotoxicity of doxorubicin, disulfiram, and copper(II) chloride was assessed with a cell viability fluorescence stain. Additionally, K7M2 viable cell counts were determined by trypan blue exclusion staining after 72 hours of treatment. Copper levels were found to be significantly higher in K12 OS cells than in K7M2 cells. qPCR showed that K12 cells upregulate the copper influx pump CTR1 and downregulate the copper efflux pump ATP7A compared to K7M2 OS cells. Combination treatment of copper chloride (50 nM) with disulfiram (80 nM) was only cytotoxic to K12 cells. Triple treatment with doxorubicin, disulfiram, and copper displayed potent and durable cytotoxicity of highly metastatic K7M2 cells. We demonstrate here that murine OS cell lines differing in metastatic potential also vary in endogenous copper levels and regulation. Additionally, these differences in copper regulation may contribute to selective cytotoxicity of K12 cells by extremely low doses of copper-potentiated disulfiram. The combination of doxorubicin, disulfiram, and copper should be explored as a therapeutic strategy against OS metastases.