Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 38(8): 877-889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261797

RESUMO

The long non-coding RNA HOTAIR and the Hedgehog-Gli1 signaling pathway are closely associated with tumor occurrence and drug resistance in various cancers. However, their specific roles in the development of EGFR-TKIs resistance in non-small cell carcinoma remain unclear. To address the issue of EGFR-TKIs resistance, this study utilized the electrospray method to prepare sodium alginate microspheres encapsulating HOTAIR siRNA (SA/HOTAIR siRNA) and investigated its effects on RNA interference (RNAi) in the gefitinib-resistant cell line PC9/GR. Furthermore, the study explored whether HOTAIR could modulate EGFR-TKIs resistance through the Hedgehog-GLi1 signaling pathway. The experimental results showed that sodium alginate (SA) microspheres demonstrated excellent biocompatibility with high encapsulation efficiency and drug-loading capacity, effectively enhancing the silencing efficiency of siRNA. HOTAIR siRNA significantly inhibited the proliferation, migration, and invasion abilities of PC9/GR cells while promoting apoptosis. Additionally, HOTAIR siRNA effectively suppressed tumor growth and downregulated the Hedgehog-GLi1 pathway and anti-apoptotic proteins, which were confirmed in animal experiments. Moreover, SA/HOTAIR siRNA exhibited superior inhibition of cellular and tumor functions compared to using HOTAIR siRNA alone. Clinical research findings indicated that monitoring the expression level of HOTAIR in the serum and urine samples of NSCLC patients before and after receiving EGFR-TKIs treatment can predict the efficacy of EGFR-TKIs to a certain extent. This study provided evidence that HOTAIR siRNA effectively mitigated the development of acquired resistance to EGFR-TKIs by inhibiting the Hedgehog-GLi1 pathway. Furthermore, it introduced a reliable and long-lasting drug delivery system for combating acquired resistance to EGFR-TKIs.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Animais , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Hedgehog/genética , Proteínas Hedgehog/farmacologia , Proteínas Hedgehog/uso terapêutico , Receptores ErbB/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Microesferas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Alginatos/farmacologia
2.
Front Oncol ; 13: 1191646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675235

RESUMO

Systemic chemotherapies are the primary treatment options for patients with unresectable and metastatic intrahepatic cholangiocarcinoma (ICC), but the effectiveness of current systemic therapies is limited. The development of targeted-therapy has changed the treatment landscape of ICC, and comprehensive genome sequencing of advanced cholangiocarcinoma patients could be beneficial to identify potential targets to guide individualized treatment. Herein, we reported an unresectable and metastatic ICC patient who detected EML4-ALK rearrangement in peripheral blood, which was later confirmed on tissue-based testing, and achieved partial response (PR) after first-line treatment with ensartinib. This case suggests that the liquid biopsy is of clinical value for unresectable or metastatic ICC, and the discovery of rare molecular targets provides new therapeutically approaches for advanced ICC patients.

3.
Eur Radiol ; 33(5): 3092-3102, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36480027

RESUMO

OBJECTIVE: To construct a new pulmonary nodule diagnostic model with high diagnostic efficiency, non-invasive and simple to measure. METHODS: This study included 424 patients with radioactive pulmonary nodules who underwent preoperative 7-autoantibody (7-AAB) panel testing, CT-based AI diagnosis, and pathological diagnosis by surgical resection. The patients were randomly divided into a training set (n = 212) and a validation set (n = 212). The nomogram was developed through forward stepwise logistic regression based on the predictive factors identified by univariate and multivariate analyses in the training set and was verified internally in the verification set. RESULTS: A diagnostic nomogram was constructed based on the statistically significant variables of age as well as CT-based AI diagnostic, 7-AAB panel, and CEA test results. In the validation set, the sensitivity, specificity, positive predictive value, and AUC were 82.29%, 90.48%, 97.24%, and 0.899 (95%[CI], 0.851-0.936), respectively. The nomogram showed significantly higher sensitivity than the 7-AAB panel test result (82.29% vs. 35.88%, p < 0.001) and CEA (82.29% vs. 18.82%, p < 0.001); it also had a significantly higher specificity than AI diagnosis (90.48% vs. 69.04%, p = 0.022). For lesions with a diameter of ≤ 2 cm, the specificity of the Nomogram was higher than that of the AI diagnostic system (90.00% vs. 67.50%, p = 0.022). CONCLUSIONS: Based on the combination of a 7-AAB panel, an AI diagnostic system, and other clinical features, our Nomogram demonstrated good diagnostic performance in distinguishing lung nodules, especially those with ≤ 2 cm diameters. KEY POINTS: • A novel diagnostic model of lung nodules was constructed by combining high-specific tumor markers with a high-sensitivity artificial intelligence diagnostic system. • The diagnostic model has good diagnostic performance in distinguishing malignant and benign pulmonary nodules, especially for nodules smaller than 2 cm. • The diagnostic model can assist the clinical decision-making of pulmonary nodules, with the advantages of high diagnostic efficiency, noninvasive, and simple measurement.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Inteligência Artificial , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/cirurgia , Autoanticorpos , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos
4.
Front Oncol ; 11: 658690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150625

RESUMO

BACKGROUND: Many clinical studies have shown that patients with non-small cell lung carcinoma (NSCLC) can benefit from immune checkpoint inhibitor (ICI) therapy; however, PD-L1 and tumor mutation burden (TMB), which are recommended by the NCCN guidelines, are still insufficient in predicting the response to and prognosis of immunotherapy. Given the widespread use of ICIs, it is important to find biomarkers that can predict immunotherapy outcomes in NSCLC patients, and the exploration of additional effective biomarkers for ICI therapy is urgently needed. METHODS: A total of 33 stage II-IV NSCLC patients were included in this study. We analyzed immune markers in biopsy and surgical tissue resected from these patients before treatment with ICIs. We examined the infiltration of immune cells and expression of PD-L1 in immune cells using fluorescent multiplex immunohistochemistry (mIHC) stained with CD8/CD68/CD163/PD-L1 antibodies. RESULTS: In this cohort, we observed that the levels of CD8+ T cells, CD8+PD-L1+ T cells, and CD68+CD163+ M2 macrophages in the total region were independent prognostic factors for progression-free survival (PFS) in NSCLC patients treated with ICIs (HR=0.04, P=0.013; HR=17.70, P=0.026; and HR=17.88, P=0.011, respectively). High infiltration of CD8+ T cells and low infiltration of CD8+PD-L1+ T cells throughout the region were correlated with prolonged PFS (P=0.016 and P=0.02, respectively). No statistically significant difference was observed for CD68+CD163+ M2 macrophages. The joint parameters CD8+ high/CD8+PD-L1+ low, CD8+ high/CD68+CD163+ low and CD8+PD-L1+ low/CD68+CD163+ low predicted better PFS than other joint parameters (P<0.01, P<0.01, and P<0.001, respectively), and they also demonstrated stronger stratification than single biomarkers. The response rate of patients with high infiltration of CD8+ T cells was significantly higher than that of those with low infiltration (P<0.01), and the joint parameters CD8+/CD8+PD-L1+ and CD8+/CD68+CD163+ also demonstrated stronger stratification than single biomarkers. CONCLUSIONS: This retrospective study identified the predictive value of CD8+PD-L1+ T cells, CD8+ T cells, and CD68+CD163+ M2 macrophages in NSCLC patients who received ICIs. Interestingly, our results indicate that the evaluation of joint parameters has certain significance in guiding ICI treatment in NSCLC patients.

5.
PLoS One ; 15(2): e0229118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32092085

RESUMO

Long noncoding RNA activated by transforming growth factor-ß (lncRNA-ATB) plays a critical role in progression of several cancers. In this study, lncRNA-ATB was significantly up-regulated in NSCLC tissues and cell lines, and high lncRNA-ATB expression indicated poor prognosis. Knockdown of lncRNA-ATB suppressed NSCLC cell growth, colony formation, migration, invasion and reversed epithelial-mesenchymal transition. In vivo study showed that silencing lncRNA-ATB inhibited tumor growth. Further mechanism studies demonstrated that lncRNA-ATB was a target of miR-141-3p. MiR-141-3p expression was negatively related to lncRNA-ATB expression in NSCLC tissues. These results suggested that inhibiting lncRNA-ATB might be an approach for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Pulmão/patologia , Pulmão/cirurgia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Camundongos , MicroRNAs/agonistas , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Pneumonectomia , Prognóstico , RNA Longo não Codificante/genética , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Mol Biol Lett ; 24: 34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31160893

RESUMO

BACKGROUND: MicroRNAs (miRNAs) have been reported to play crucial roles in cancer cell processes, including proliferation, metastasis and cell cycle progression. We aimed to identify miRNAs that could act as suppressors of cell growth and invasion in non-small cell lung cancer (NSCLC). METHODS: Fifteen paired NSCLC tissue samples and pericarcinomatous normal tissues were collected and preserved in liquid nitrogen. The expression levels of miR-340-5p and ZNF503 mRNA were detected using a qPCR assay. The transfection of plasmids was conducted using Lipofectamine 3000 according to the manufacturer's protocol. Cell proliferation was determined using a CCK-8 assay. The protein levels of endothelial-mesenchymal transition markers were measured using a western blot assay. Cell invasive ability was evaluated using a transwell assay. TargetScan was used to predict targets of miR-340. A dual luciferase reporter assay was performed to confirm a potential direct interaction between miR-340-5p and ZNF503. RESULTS: The expression level of miR-340-5p was frequently found to be lower in NSCLC tissues than in matched pericarcinomatous normal tissues. Overexpression of miR-340-5p significantly inhibited the proliferation and invasion NCI-H1650 (a NSCLC cell line), while inhibition of miR-340-5p stimulated cell growth. Using TargetScan, we predicted that ZNF503 could be a target of miR-340-5p. Further mechanistic studies demonstrated that the forced expression of ZNF503 could partially abrogate the miR-340-5p-mediated decrease in NCI-H1650 cell viability and invasion, suggesting that miR-340-5p suppressed cell growth and invasion in a ZNF503-dependent manner. CONCLUSION: Our findings indicate that miR-340-5p inhibits NCI-H1650 cell proliferation and invasion by directly targeting ZNF503 and that miR-340-5p can serve as a potential therapeutic target for treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA