Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101912, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398355

RESUMO

Molecular chaperones safeguard cellular protein homeostasis and obviate proteotoxicity. In the process of aging, as chaperone networks decline, aberrant protein amyloid aggregation accumulates in a mechanism that underpins neurodegeneration, leading to pathologies such as Alzheimer's disease and Parkinson's disease. Thus, it is important to identify and characterize chaperones for preventing such protein aggregation. In this work, we identified that the NAD+ synthase-nicotinamide mononucleotide adenylyltransferase (NMNAT) 3 from mouse (mN3) exhibits potent chaperone activity to antagonize aggregation of a wide spectrum of pathological amyloid client proteins including α-synuclein, Tau (K19), amyloid ß, and islet amyloid polypeptide. By combining NMR spectroscopy, cross-linking mass spectrometry, and computational modeling, we further reveal that mN3 uses different region of its amphiphilic surface near the active site to directly bind different amyloid client proteins. Our work demonstrates a client recognition mechanism of NMNAT via which it chaperones different amyloid client proteins against pathological aggregation and implies a potential protective role for NMNAT in different amyloid-associated diseases.


Assuntos
Proteínas Amiloidogênicas , Nicotinamida-Nucleotídeo Adenililtransferase , Proteínas Amiloidogênicas/metabolismo , Animais , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Agregação Patológica de Proteínas/fisiopatologia
2.
Nat Struct Mol Biol ; 27(4): 363-372, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231288

RESUMO

Protein phase separation drives the assembly of membraneless organelles, but little is known about how these membraneless organelles are maintained in a metastable liquid- or gel-like phase rather than proceeding to solid aggregation. Here, we find that human small heat-shock protein 27 (Hsp27), a canonical chaperone that localizes to stress granules (SGs), prevents FUS from undergoing liquid-liquid phase separation (LLPS) via weak interactions with the FUS low complexity (LC) domain. Remarkably, stress-induced phosphorylation of Hsp27 alters its activity, leading Hsp27 to partition with FUS LC to preserve the liquid phase against amyloid fibril formation. NMR spectroscopy demonstrates that Hsp27 uses distinct structural mechanisms for both functions. Our work reveals a fine-tuned regulation of Hsp27 for chaperoning FUS into either a polydispersed state or a LLPS state and suggests an essential role for Hsp27 in stabilizing the dynamic phase of stress granules.


Assuntos
Proteínas de Choque Térmico HSP27/química , Chaperonas Moleculares/química , Proteína FUS de Ligação a RNA/química , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/isolamento & purificação , Humanos , Extração Líquido-Líquido , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Fosforilação , Ligação Proteica/genética , Domínios Proteicos/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Estresse Fisiológico/genética
3.
J Biol Chem ; 294(13): 4956-4965, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30718279

RESUMO

Heat shock protein 104 (HSP104) is a conserved AAA+ protein disaggregase, can disassemble the toxic aggregates formed by different amyloid proteins, and is protective in various animal models associated with amyloid-related diseases. Extensive studies have attempted to elucidate how HSP104 disassembles the aggregated form of clients. Here, we found that HSP104 exhibits a potent holdase activity that does not require energy, prevents the soluble form of amyloid clients from aggregating, and differs from HSP104's disaggregase activity. Using cryo-EM, NMR, and additional biophysical approaches, we found that HSP104 utilizes its small subdomain of nucleotide-binding domain 2 (ssNBD2) to capture the soluble amyloid client (K19 of Tau) independent of its ATP hydrolysis activity. Our results indicate that HSP104 utilizes two fundamental distinct mechanisms to chaperone different forms of amyloid client and highlight the important yet previously unappreciated function of ssNBD2 in chaperoning amyloid client and thereby preventing pathological aggregation.


Assuntos
Amiloide/química , Proteínas de Choque Térmico/química , Proteínas tau/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Amiloide/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Domínios Proteicos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA