Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 212: 115524, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37001680

RESUMO

Microglial activation-induced neuroinflammation contributes to onset and progression of sporadic and hereditary Parkinson's disease (PD). Activated microglia secrete pro-inflammatory and neurotoxic IL-1ß, IL-6 and TNF-α, which subsequently promote neurodegeneration. Formyl peptide receptor-1 (FPR1) of CNS microglia functions as pattern recognition receptor and is activated by N-formylated peptides, leading to microglial activation, induction of inflammatory responses and resulting neurotoxicity. In this study, it was hypothesized that FPR1 activation of microglia causes loss of dopaminergic neurons by activating inflammasome and upregulating IL-1ß, IL-6 or TNF-α and that FPR1 antagonist HCH6-1 exerts neuroprotective effect on dopaminergic neurons. FPR1 agonist fMLF induced activation of microglia cells by causing activation of NLRP3 inflammasome and upregulation and secretion of IL-1ß, IL-6 or TNF-α. Conditioned medium (CM) of fMLF-treated microglia cells, which contains neurotoxic IL-1ß, IL-6 and TNF-α, caused apoptotic death of differentiated SH-SY5Y dopaminergic neurons by inducing mitochondrial oxidative stress and activating pro-apoptotic signaling. FPR1 antagonist HCH6-1 prevented fMLF-induced activation of inflammasome and upregulation of pro-inflammatory cytokines in microglia cells. HCH6-1 co-treatment reversed CM of fMLF-treated microglia-induced apoptotic death of dopaminergic neurons. FPR1 antagonist HCH6-1 inhibited rotenone-induced upregulation of microglial marker Iba-1 protein level, cell death of dopaminergic neurons and motor impairment in zebrafish. HCH6-1 ameliorated rotenone-induced microglial activation, upregulation of FPR1 mRNA, activation of NLRP3 inflammasome, cell death of SN dopaminergic neurons and PD motor deficit in mice. Our results suggest that FPR1 antagonist HCH6-1 possesses anti-neuroinflammatory and neuroprotective effects on dopaminergic neurons by inhibiting microglial activation and upregulation of inflammasome activity and pro-inflammatory cytokines.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Interleucina-6/metabolismo , Rotenona/toxicidade , Rotenona/metabolismo , Peixe-Zebra , Modelos Animais de Doenças , Neuroblastoma/metabolismo , Neurônios Dopaminérgicos , Microglia , Citocinas/metabolismo
2.
Mol Neurobiol ; 60(5): 2706-2728, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36715921

RESUMO

Deletion and missense or nonsense mutation of RAB39B gene cause familial Parkinson's disease (PD). We hypothesized that deletion and mutation of RAB39B gene induce degeneration of dopaminergic neurons by decreasing protein level of functional RAB39B and causing RAB39B deficiency. Cellular model of deletion or mutation of RAB39B gene-induced PD was prepared by knocking down endogenous RAB39B in human SH-SY5Y dopaminergic cells. Transfection of shRNA-induced 90% reduction in RAB39B level significantly decreased viability of SH-SY5Y dopaminergic neurons. Deficiency of RAB39B caused impairment of macroautophagy/autophagy, which led to increased protein levels of α-synuclein and phospho-α-synucleinSer129 within endoplasmic reticulum (ER) and mitochondria. RAB39B deficiency-induced increase of ER α-synuclein and phospho-α-synucleinSer129 caused activation of ER stress, unfolded protein response, and ER stress-induced pro-apoptotic cascade. Deficiency of RAB39B-induced increase of mitochondrial α-synuclein decreased mitochondrial membrane potential and increased mitochondrial superoxide. RAB39B deficiency-induced activation of ER stress pro-apoptotic pathway, mitochondrial dysfunction, and oxidative stress caused apoptotic death of SH-SY5Y dopaminergic cells by activating mitochondrial apoptotic cascade. In contrast to neuroprotective effect of wild-type RAB39B, PD mutant (T168K), (W186X), or (G192R) RAB39B did not prevent tunicamycin- or rotenone-induced increase of neurotoxic α-synuclein and activation of pro-apoptotic pathway. Our results suggest that RAB39B is required for survival and macroautophagy function of dopaminergic neurons and that deletion or PD mutation of RAB39B gene-induced RAB39B deficiency induces apoptotic death of dopaminergic neurons via impairing autophagy function and upregulating α-synuclein.


Assuntos
Estresse do Retículo Endoplasmático , Neuroblastoma , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Autofagia , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Estresse Oxidativo , Proteínas rab de Ligação ao GTP/metabolismo
3.
Vis Neurosci ; 39: E003, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543445

RESUMO

During the first postnatal week in rodents, cholinergic retinal waves initiate in starburst amacrine cells (SACs), propagating to retinal ganglion cells (RGCs) and visual centers, essential for visual circuit refinement. By modulating exocytosis in SACs, dynamic changes in the protein kinase A (PKA) activity can regulate the spatiotemporal patterns of cholinergic waves. Previously, cysteine string protein-α (CSPα) is found to interact with the core exocytotic machinery by PKA-mediated phosphorylation at serine 10 (S10). However, whether PKA-mediated CSPα phosphorylation may regulate cholinergic waves via SACs remains unknown. Here, we examined how CSPα phosphorylation in SACs regulates cholinergic waves. First, we identified that CSPα1 is the major isoform in developing rat SACs and the inner plexiform layer during the first postnatal week. Using SAC-specific expression, we found that the CSPα1-PKA-phosphodeficient mutant (CSP-S10A) decreased wave frequency, but did not alter the wave spatial correlation compared to control, wild-type CSPα1 (CSP-WT), or two PKA-phosphomimetic mutants (CSP-S10D and CSP-S10E). These suggest that CSPα-S10 phosphodeficiency in SACs dampens the frequency of cholinergic waves. Moreover, the level of phospho-PKA substrates was significantly reduced in SACs overexpressing CSP-S10A compared to control or CSP-WT, suggesting that the dampened wave frequency is correlated with the decreased PKA activity. Further, compared to control or CSP-WT, CSP-S10A in SACs reduced the periodicity of wave-associated postsynaptic currents (PSCs) in neighboring RGCs, suggesting that these RGCs received the weakened synaptic inputs from SACs overexpressing CSP-S10A. Finally, CSP-S10A in SACs decreased the PSC amplitude and the slope to peak PSC compared to control or CSP-WT, suggesting that CSPα-S10 phosphodeficiency may dampen the speed of the SAC-RGC transmission. Thus, via PKA-mediated phosphorylation, CSPα in SACs may facilitate the SAC-RGC transmission, contributing to the robust frequency of cholinergic waves.


Assuntos
Células Amácrinas , Proteínas de Choque Térmico HSP40 , Células Amácrinas/metabolismo , Animais , Colinérgicos/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana , Fosforilação , Ratos , Retina/metabolismo
4.
J Mol Endocrinol ; 67(3): 149-159, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34370683

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator of adipocytes and the cellular target of thiazolidinedione (TZD) drugs. Suppression of pro-inflammatory actions, including pro-inflammatory gene expression and lipolysis in adipocytes, contributes to PPARγ-mediated anti-diabetic effects of TZDs. However, adverse side effects largely limited the clinical use of TZDs, despite their potent insulin-sensitizing effects. Therefore, it is important to understand how PPARγ is regulated. Thyroid hormone receptor-associated protein 3 (THRAP3) was previously reported to promote diabetic gene expression by acting as a transcriptional coregulator of PPARγ in adipocytes. Therefore, we tested if THRAP3 modulated anti-inflammatory functions of PPARγ in 3T3-L1 adipocytes. THRAP3 depletion increased basal and tumor necrosis factor α (TNFα)-induced lipolysis, pro-inflammatory gene expression, and phosphorylation of extracellular signal-regulated kinases (ERKs), suggesting elevated pro-inflammatory response after THRAP3 depletion in adipocytes. Moreover, TZD-mediated suppression of TNFα-induced lipolysis, pro-inflammatory gene expression, and ERK phosphorylation was attenuated or alleviated after THRAP3 depletion. Interestingly, the mRNA and protein levels of PPARγ were greatly reduced in THRAP3-depleted adipocytes. Actinomycin D treatment revealed that the stability of PPARγ mRNA was greatly reduced by THRAP3 depletion in adipocytes. Thus, in addition to modulating PPARγ function, THRAP3 may directly regulate the transcript of PPARγ in differentiated adipocytes.


Assuntos
Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , PPAR gama/genética , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Biomarcadores , Mediadores da Inflamação/metabolismo , Lipólise/efeitos dos fármacos , Camundongos , PPAR gama/metabolismo , Perilipinas/genética , Perilipinas/metabolismo , Fosforilação , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
J Neurosci ; 41(13): 2828-2841, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33632727

RESUMO

Common fusion machinery mediates the Ca2+-dependent exocytosis of synaptic vesicles (SVs) and dense-core vesicles (DCVs). Previously, Synapsin Ia (Syn Ia) was found to localize to SVs, essential for mobilizing SVs to the plasma membrane through phosphorylation. However, whether (or how) the phosphoprotein Syn Ia plays a role in regulating DCV exocytosis remains unknown. To answer these questions, we measured the dynamics of DCV exocytosis by using single-vesicle amperometry in PC12 cells (derived from the pheochromocytoma of rats of unknown sex) overexpressing wild-type or phosphodeficient Syn Ia. We found that overexpression of phosphodeficient Syn Ia decreased the DCV secretion rate, specifically via residues previously shown to undergo calmodulin-dependent kinase (CaMK)-mediated phosphorylation (S9, S566, and S603). Moreover, the fusion pore kinetics during DCV exocytosis were found to be differentially regulated by Syn Ia and two phosphodeficient Syn Ia mutants (Syn Ia-S62A and Syn Ia-S9,566,603A). Kinetic analysis suggested that Syn Ia may regulate the closure and dilation of DCV fusion pores via these sites, implying the potential interactions of Syn Ia with certain DCV proteins involved in the regulation of fusion pore dynamics. Furthermore, we predicted the interaction of Syn Ia with several DCV proteins, including Synaptophysin (Syp) and soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins. By immunoprecipitation, we found that Syn Ia interacted with Syp via phosphorylation. Moreover, a proximity ligation assay (PLA) confirmed their phosphorylation-dependent, in situ interaction on DCVs. Together, these findings reveal a phosphorylation-mediated regulation of DCV exocytosis by Syn Ia.SIGNIFICANCE STATEMENT Although they exhibit distinct exocytosis dynamics upon stimulation, synaptic vesicles (SVs) and dense-core vesicles (DCVs) may undergo co-release in neurons and neuroendocrine cells through an undefined molecular mechanism. Synapsin Ia (Syn Ia) is known to recruit SVs to the plasma membrane via phosphorylation. Here, we examined whether Syn Ia also affects the dynamics of DCV exocytosis. We showed that Syn Ia regulates the DCV secretion rate and fusion pore kinetics during DCV exocytosis. Moreover, Syn Ia-mediated regulation of DCV exocytosis depends on phosphorylation. We further found that Syn Ia interacts with Synaptophysin (Syp) on DCVs in a phosphorylation-dependent manner. Thus, these results suggest that Syn Ia may regulate the release of DCVs via phosphorylation.


Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células PC12 , Fosfoproteínas/metabolismo , Ratos
6.
Aging Cell ; 16(4): 797-813, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28514051

RESUMO

Cellular senescence is a permanent proliferative arrest triggered by genome instability or aberrant growth stresses, acting as a protective or even tumor-suppressive mechanism. While several key aspects of gene regulation have been known to program this cessation of cell growth, the involvement of the epigenetic regulation has just emerged but remains largely unresolved. Using a systems approach that is based on targeted gene profiling, we uncovered known and novel chromatin modifiers with putative link to the senescent state of the cells. Among these, we identified SETD8 as a new target as well as a key regulator of the cellular senescence signaling. Knockdown of SETD8 triggered senescence induction in proliferative culture, irrespectively of the p53 status of the cells; ectopic expression of this epigenetic writer alleviated the extent doxorubicin-induced cellular senescence. This repressive effect of SETD8 in senescence was mediated by directly maintaining the silencing mark H4K20me1 at the locus of the senescence switch gene p21. Further in support of this regulatory link, depletion of p21 reversed this SETD8-mediated cellular senescence. Additionally, we found that PPARγ acts upstream and regulates SETD8 expression in proliferating cells. Downregulation of PPARγ coincided with the senescence induction, while its activation inhibited the progression of this process. Viewed together, our findings delineated a new epigenetic pathway through which the PPARγ-SETD8 axis directly silences p21 expression and consequently impinges on its senescence-inducing function. This implies that SETD8 may be part of a cell proliferation checkpoint mechanism and has important implications in antitumor therapeutics.


Assuntos
Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Epigênese Genética , Fibroblastos/metabolismo , Histona-Lisina N-Metiltransferase/genética , PPAR gama/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Doxorrubicina/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/efeitos da radiação , PPAR gama/metabolismo , Cultura Primária de Células , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta
7.
PLoS One ; 9(6): e99180, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24956274

RESUMO

BACKGROUND: Cysteine string protein-α (CSPα) is a chaperone to ensure protein folding. Loss of CSPα function associates with many neurological diseases. However, its function in modulating regulated exocytosis remains elusive. Although cspα-knockouts exhibit impaired synaptic transmission, overexpression of CSPα in neuroendocrine cells inhibits secretion. These seemingly conflicting results lead to a hypothesis that CSPα may undergo a modification that switches its function in regulating neurotransmitter and hormone secretion. Previous studies implied that CSPα undergoes phosphorylation at Ser10 that may influence exocytosis by altering fusion pore dynamics. However, direct evidence is missing up to date. METHODOLOGY/PRINCIPAL FINDINGS: Using amperometry, we investigated how phosphorylation at Ser10 of CSPα (CSPα-Ser10) modulates regulated exocytosis and if this modulation involves regulating a specific kinetic step of fusion pore dynamics. The real-time exocytosis of single vesicles was detected in PC12 cells overexpressing control vector, wild-type CSPα (WT), the CSPα phosphodeficient mutant (S10A), or the CSPα phosphomimetic mutants (S10D and S10E). The shapes of amperometric signals were used to distinguish the full-fusion events (i.e., prespike feet followed by spikes) and the kiss-and-run events (i.e., square-shaped flickers). We found that the secretion rate was significantly increased in cells overexpressing S10D or S10E compared to WT or S10A. Further analysis showed that overexpression of S10D or S10E prolonged fusion pore lifetime compared to WT or S10A. The fraction of kiss-and-run events was significantly lower but the frequency of full-fusion events was higher in cells overexpressing S10D or S10E compared to WT or S10A. Advanced kinetic analysis suggests that overexpression of S10D or S10E may stabilize open fusion pores mainly by inhibiting them from closing. CONCLUSIONS/SIGNIFICANCE: CSPα may modulate fusion pore dynamics in a phosphorylation-dependent manner. Therefore, through changing its phosphorylated state influenced by diverse cellular signalings, CSPα may have a great capacity to modulate the rate of regulated exocytosis.


Assuntos
Exocitose , Proteínas de Choque Térmico HSP40/genética , Fusão de Membrana , Proteínas de Membrana/genética , Mutação/genética , Animais , Membrana Celular/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Cinética , Proteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Células PC12 , Fosforilação , Ratos
8.
PLoS One ; 9(4): e95090, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24777042

RESUMO

BACKGROUND: Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A) receptor (A(2A)R) regulates retinal waves and whether A(2A)R regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS: We showed that A(2A)R was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2A)R decreased the frequency of spontaneous Ca²âº transients, suggesting that endogenous A(2A)R may up-regulate wave frequency. To investigate whether A(2A)R acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²âº transient frequency was increased by expressing wild-type A(2A)R (A2AR-WT) in SACs, suggesting that A(2A)R may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2A)R-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2A)R may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2A)R mutant (A(2A)R-ΔC) in SACs, the wave frequency was reduced compared to the A(2A)R-WT, but was similar to the control, suggesting that the full-length A(2A)R in SACs is required for A(2A)R up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE: A(2A)R up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full-length protein structure. Thus, by coupling with the downstream intracellular signaling, A(2A)R may have a great capacity to modulate patterned spontaneous activity during neural circuit refinement.


Assuntos
Potenciais de Ação , Células Amácrinas/citologia , Receptor A2A de Adenosina/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Regulação para Cima , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Imagem Molecular , Mutação , Ratos , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/deficiência , Receptor A2A de Adenosina/genética , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Transdução de Sinais , Potenciais Sinápticos
9.
PLoS One ; 8(8): e71517, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951179

RESUMO

In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects on lipolysis. These studies suggest that TSA, through down-regulating PPARγ, attenuates TZD-mediated suppression of TNFα-induced ERK phosphorylation and lipolysis in adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Hipoglicemiantes/farmacologia , Lipólise/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Cell Metab ; 10(5): 419-29, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19883619

RESUMO

Chronic low-grade inflammation, particularly in adipose tissue, is an important modulator of obesity-induced insulin resistance. The Toll-like receptor 4 (Tlr4) is a key initiator of inflammatory responses in macrophages. We performed bone marrow transplantation (BMT) of Tlr4lps-del or control C57Bl/10J donor cells into irradiated wild-type C57Bl6 recipient mice to generate hematopoietic cell-specific Tlr4 deletion mutant (BMT-Tlr4(-/-)) and control (BMT-WT) mice. After 16 weeks of a high-fat diet (HFD), BMT-WT mice developed obesity, hyperinsulinemia, glucose intolerance, and insulin resistance. In contrast, BMT-Tlr4(-/-) mice became obese but did not develop fasting hyperinsulinemia and had improved hepatic and adipose insulin sensitivity during euglycemic clamp studies, compared to HFD BMT-WT controls. HFD BMT-Tlr4(-/-) mice also showed markedly reduced adipose tissue inflammatory markers and macrophage content. In summary, our results indicate that Tlr4 signaling in hematopoietic-derived cells is important for the development of hepatic and adipose tissue insulin resistance in obese mice.


Assuntos
Tecido Adiposo/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Obesidade/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Tecido Adiposo/patologia , Animais , Gorduras na Dieta/administração & dosagem , Técnicas de Inativação de Genes , Técnica Clamp de Glucose , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Obesos , Obesidade/etiologia , Obesidade/patologia , Especificidade de Órgãos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/genética
11.
Mol Cell Biol ; 29(5): 1363-74, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19103747

RESUMO

SIRT1 is a prominent member of a family of NAD(+)-dependent enzymes and affects a variety of cellular functions ranging from gene silencing, regulation of the cell cycle and apoptosis, to energy homeostasis. In mature adipocytes, SIRT1 triggers lipolysis and loss of fat content. However, the potential effects of SIRT1 on insulin signaling pathways are poorly understood. To assess this, we used RNA interference to knock down SIRT1 in 3T3-L1 adipocytes. SIRT1 depletion inhibited insulin-stimulated glucose uptake and GLUT4 translocation. This was accompanied by increased phosphorylation of JNK and serine phosphorylation of insulin receptor substrate 1 (IRS-1), along with inhibition of insulin signaling steps, such as tyrosine phosphorylation of IRS-1, and phosphorylation of Akt and ERK. In contrast, treatment of cells with specific small molecule SIRT1 activators led to an increase in glucose uptake and insulin signaling as well as a decrease in serine phosphorylation of IRS-1. Moreover, gene expression profiles showed that SIRT1 expression was inversely related to inflammatory gene expression. Finally, we show that treatment of 3T3-L1 adipocytes with a SIRT1 activator attenuated tumor necrosis factor alpha-induced insulin resistance. Taken together, these data indicate that SIRT1 is a positive regulator of insulin signaling at least partially through the anti-inflammatory actions in 3T3-L1 adipocytes.


Assuntos
Inflamação , Resistência à Insulina , Insulina/fisiologia , Sirtuínas/fisiologia , Células 3T3-L1 , Adipócitos , Animais , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Camundongos , Interferência de RNA , Transdução de Sinais , Sirtuína 1
12.
Mol Endocrinol ; 23(2): 202-12, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19056863

RESUMO

Despite the growing body of evidence supporting prolactin (PRL) actions in human breast cancer, little is known regarding PRL regulation of its own receptor in these cells. Ligand-initiated endocytosis is a key process in the regulation of receptor availability and signaling cascades that may lead to oncogenic actions. Although exposure to exogenous PRL accelerates degradation of the long isoform of the PRL receptor (lPRLR), neither the signals initiated by PRL that lead to lPRLR internalization and subsequent down-regulation, nor the relationship to downstream pathways are understood in breast cancer cells. In this study, we showed that PRL-induced down-regulation of the lPRLR was reduced by inhibition of src family kinases (SFKs), but not Janus kinase 2, in MCF-7 cells. Inhibition of SFKs also resulted in accumulation of a PRL-induced PRLR fragment containing the extracellular domain, which appeared to be generated from newly synthesized PRLR. lPRLR was constitutively associated with SFKs in lipid rafts. PRL-induced SFK activation led to recruitment of the guanosine triphosphatase, dynamin-2, to an internalization complex, resulting in endocytosis. Inhibition of endocytosis by small interfering RNA-mediated knockdown of dynamin-2 blocked PRL-induced down-regulation of lPRLR, confirming that internalization is essential for this process. Endocytosis also was required for optimal phosphorylation of ERK1/2 and Akt, but not for Janus kinase 2 or signal transducer and activator of transcription 5, indicating that internalization selectively modulates signaling cascades. Together, these data indicate that SFKs are key mediators of ligand-initiated lPRLR internalization, down-regulation, and signal transduction in breast cancer cells, and underscore the importance of target cell context in receptor trafficking and signal transduction.


Assuntos
Neoplasias da Mama , Endocitose/fisiologia , Receptores da Prolactina/metabolismo , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Dinamina II/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Microdomínios da Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Quinases da Família src/genética
13.
Proc Natl Acad Sci U S A ; 105(18): 6614-9, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18445652

RESUMO

Glucagon-like peptide-1 (GLP-1) is a polypeptide hormone secreted from enteroendocrine L cells and potentiates glucose-dependent insulin secretion in pancreatic beta cells. Recently the GLP-1 receptor (GLP-1 R) has been a focus for new anti-diabetic therapy with the introduction of GLP-1 analogues and DPP-IV inhibitors, and this has stimulated additional interest in the mechanisms of GLP-1 signaling. Here we identify a mechanism for GLP-1 action, showing that the scaffold protein beta-arrestin-1 mediates the effects of GLP-1 to stimulate cAMP production and insulin secretion in beta cells. Using a coimmunoprecipitation technique, we also found a physical association between the GLP-1 R and beta-arrestin-1 in cultured INS-1 pancreatic beta cells. beta-Arrestin-1 knockdown broadly attenuated GLP-1 signaling, causing decreased ERK and CREB activation and IRS-2 expression as well as reduced cAMP levels and impaired insulin secretion. However, beta-arrestin-1 knockdown did not affect GLP-1 R surface expression and ligand-induced GLP-1 R internalization/desensitization. Taken together, these studies indicate that beta-arrestin-1 plays a role in GLP-1 signaling leading to insulin secretion, defining a previously undescribed mechanism for GLP-1 action.


Assuntos
Arrestinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Endocitose/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Proteínas Substratos do Receptor de Insulina , Secreção de Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores de Glucagon/metabolismo , beta-Arrestina 1 , beta-Arrestinas
14.
J Biol Chem ; 282(39): 28549-28556, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17664271

RESUMO

Tumor necrosis factor-alpha (TNFalpha) is a proinflammatory cytokine secreted from macrophages and adipocytes. It is well known that chronic TNFalpha exposure can lead to insulin resistance both in vitro and in vivo and that elevated blood levels of TNFalpha are observed in obese and/or diabetic individuals. TNFalpha has many acute biologic effects, mediated by a complex intracellular signaling pathway. In these studies we have identified new G-protein signaling components to this pathway in 3T3-L1 adipocytes. We found that beta-arrestin-1 is associated with TRAF2 (TNF receptor-associated factor 2), an adaptor protein of TNF receptors, and that TNFalpha acutely stimulates tyrosine phosphorylation of G alpha(q/11) with an increase in G alpha(q/11) activity. Small interfering RNA-mediated knockdown of beta-arrestin-1 inhibits TNFalpha-induced tyrosine phosphorylation of G alpha(q/11) by interruption of Src kinase activation. TNFalpha stimulates lipolysis in 3T3-L1 adipocytes, and beta-arrestin-1 knockdown blocks the effects of TNFalpha to stimulate ERK activation and glycerol release. TNFalpha also led to activation of JNK with increased expression of the proinflammatory gene, monocyte chemoattractant protein-1 and matrix metalloproteinase 3, and beta-arrestin-1 knockdown inhibited both of these effects. Taken together these results reveal novel elements of TNFalpha action; 1) the trimeric G-protein component G alpha(q/11) and the adapter protein beta-arrestin-1 can function as signaling molecules in the TNFalpha action cascade; 2) beta-arrestin-1 can couple TNFalpha stimulation to ERK activation and lipolysis; 3) beta-arrestin-1 and G alpha(q/11) can mediate TNFalpha-induced phosphatidylinositol 3-kinase activation and inflammatory gene expression.


Assuntos
Adipócitos/metabolismo , Arrestinas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3-L1 , Animais , Complicações do Diabetes/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicerol/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Lipólise/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , beta-Arrestina 1 , beta-Arrestinas
15.
Mol Cell Biol ; 27(14): 5172-83, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17515613

RESUMO

Phosphatidylinositol 3-kinase activation of Akt signaling is critical to insulin-stimulated glucose transport and GLUT4 translocation. However, the downstream signaling events following Akt activation which mediate glucose transport stimulation remain relatively unknown. Here we identify an Akt consensus phosphorylation motif in the actin-based motor protein myosin 5a and show that insulin stimulation leads to phosphorylation of myosin 5a at serine 1650. This Akt-mediated phosphorylation event enhances the ability of myosin 5a to interact with the actin cytoskeleton. Small interfering RNA-induced inhibition of myosin 5a and expression of dominant-negative myosin 5a attenuate insulin-stimulated glucose transport and GLUT4 translocation. Furthermore, knockdown of Akt2 or expression of dominant-negative Akt (DN-Akt) abolished insulin-stimulated phosphorylation of myosin 5a, inhibited myosin 5a binding to actin, and blocked insulin-stimulated glucose transport. Taken together, these data indicate that myosin 5a is a newly identified direct substrate of Akt2 and, upon insulin stimulation, phosphorylated myosin 5a facilitates anterograde movement of GLUT4 vesicles along actin to the cell surface.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo , Células 3T3-L1 , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Genes Dominantes , Glucose/metabolismo , Humanos , Isoenzimas/metabolismo , Camundongos , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Miosina Tipo V/química , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteína Quinase C/metabolismo , Interferência de RNA , Especificidade por Substrato/efeitos dos fármacos , Proteínas rab4 de Ligação ao GTP/metabolismo
16.
J Biol Chem ; 280(51): 42300-6, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16239226

RESUMO

Although the cytoskeletal network is important for insulin-induced glucose uptake, several studies have assessed the effects of microtubule disruption on glucose transport with divergent results. Here, we investigated the effects of microtubule-depolymerizing reagent, nocodazole and colchicine, on GLUT4 translocation in 3T3-L1 adipocytes. After nocodazole treatment to disrupt microtubules, GLUT4 vesicles were dispersed from the perinuclear region in the basal state, and insulin-induced GLUT4 translocation was partially inhibited by 20-30%, consistent with other reports. We found that platelet-derived growth factor (PDGF), which did not stimulate GLUT4 translocation in intact cells, was surprisingly able to enhance GLUT4 translocation to approximately 50% of the maximal insulin response, in nocodazole-treated cells with disrupted microtubules. This effect of PDGF was blocked by pretreatment with wortmannin and attenuated in cells pretreated with cytochalasin D. Using confocal microscopy, we found an increased co-localization of GLUT4 and F-actin in nocodazole-treated cells upon PDGF stimulation compared with control cells. Furthermore, microinjection of small interfering RNA targeting the actin-based motor Myo1c, but not the microtubule-based motor KIF3, significantly inhibited both insulin- and PDGF-stimulated GLUT4 translocation after nocodazole treatment. In summary, our data suggest that 1) proper perinuclear localization of GLUT4 vesicles is a requirement for insulin-specific stimulation of GLUT4 translocation, and 2) nocodazole treatment disperses GLUT4 vesicles from the perinuclear region allowing them to engage insulin and PDGF-sensitive actin filaments, which can participate in GLUT4 translocation in a phosphatidylinositol 3-kinase-dependent manner.


Assuntos
Adipócitos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Microtúbulos/metabolismo , Transdução de Sinais , Células 3T3-L1 , Actinas/metabolismo , Animais , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
J Biol Chem ; 280(40): 33909-16, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16103113

RESUMO

Prolactin regulates a variety of physiological processes, including mammary gland growth and differentiation, and recent findings support an important role in breast cancer development and progression. However, little is known about the trafficking of its receptor, a member of the cytokine receptor superfamily. In the present study, we examined the effect of ligand on the endogenous "long" isoform of the prolactin receptor in breast cancer cells. We found that prolactin caused rapid and prolonged down-regulation of this receptor. The prolactin-induced increase in degradation was blocked by inhibitors of both proteasomes and lysosomes. However, the ubiquitin-conjugating system was not required for internalization. Prolactin also resulted in the concomitant appearance of a cell-associated prolactin receptor fragment containing the extracellular domain. This latter process required proteasomal, but not metalloprotease, activity, distinguishing it from ectodomain "shedding" of other membrane receptors, which are secreted as binding proteins. The prolactin receptor fragment was labeled by surface biotinylation and independent of protein synthesis. Together, these data indicated that prolactin binding initiates limited proteasomal cleavage of its receptor, generating a cell-associated fragment containing the extracellular domain. Our findings described a new potential mediator of prolactin action and a novel mechanism whereby proteasomes modulate cellular processes.


Assuntos
Neoplasias da Mama/patologia , Prolactina/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Receptores da Prolactina/fisiologia , Regulação para Baixo , Feminino , Humanos , Isomerismo , Ligantes , Lisossomos , Fragmentos de Peptídeos , Prolactina/metabolismo , Receptores de Superfície Celular , Células Tumorais Cultivadas
18.
Mol Endocrinol ; 19(11): 2760-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15994203

RESUMO

G protein-coupled receptor kinases (GRKs) regulate seven-transmembrane receptors (7TMRs) by phosphorylating agonist-activated 7TMRs. Recently, we have reported that GRK2 can function as a negative regulator of insulin action by interfering with G protein-q/11 alpha-subunit (Galphaq/11) signaling, causing decreased glucose transporter 4 (GLUT4) translocation. We have also reported that chronic endothelin-1 (ET-1) treatment leads to heterologous desensitization of insulin signaling with decreased tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and Galphaq/11, and decreased insulin-stimulated glucose transport in 3T3-L1 adipocytes. In the current study, we have investigated the role of GRK2 in chronic ET-1-induced insulin resistance. Insulin-induced GLUT4 translocation was inhibited by pretreatment with ET-1 for 24 h, and we found that this inhibitory effect was rescued by microinjection of anti-GRK2 antibody or GRK2 short interfering RNA. We further found that GRK2 mediates the inhibitory effects of ET-1 by two distinct mechanisms. Firstly, adenovirus-mediated overexpression of either wild-type (WT)- or kinase-deficient (KD)-GRK2 inhibited Galphaq/11 signaling, including tyrosine phosphorylation of Galphaq/11 and cdc42-associated phosphatidylinositol 3-kinase activity. Secondly, ET-1 treatment caused Ser/Thr phosphorylation of IRS-1 and IRS-1 protein degradation. Overexpression of KD-GRK2, but not WT-GRK2, inhibited ET-1-induced serine 612 phosphorylation of IRS-1 and restored activation of this pathway. Taken together, these results suggest that GRK2 mediates ET-1-induced insulin resistance by 1) inhibition of Galphaq/11 activation, and this effect is independent of GRK2 kinase activity, and 2) GRK2 kinase activity-mediated IRS-1 serine phosphorylation and degradation.


Assuntos
Adipócitos/metabolismo , Endotelina-1/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Resistência à Insulina , Fosfoproteínas/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Endotelina-1/metabolismo , Endotelina-1/toxicidade , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Camundongos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , RNA Interferente Pequeno/farmacologia , Serina/metabolismo , Ativação Transcricional
19.
Nature ; 424(6951): 943-7, 2003 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12931189

RESUMO

Exocytosis-the release of the contents of a vesicle--proceeds by two mechanisms. Full fusion occurs when the vesicle and plasma membranes merge. Alternatively, in what is termed kiss-and-run, vesicles can release transmitter during transient contacts with the plasma membrane. Little is known at the molecular level about how the choice between these two pathways is regulated. Here we report amperometric recordings of catecholamine efflux through individual fusion pores. Transfection with synaptotagmin (Syt) IV increased the frequency and duration of kiss-and-run events, but left their amplitude unchanged. Endogenous Syt IV, induced by forskolin treatment, had a similar effect. Full fusion was inhibited by mutation of a Ca2+ ligand in the C2A domain of Syt I; kiss-and-run was inhibited by mutation of a homologous Ca2+ ligand in the C2B domain of Syt IV. The Ca2+ sensitivity for full fusion was 5-fold higher with Syt I than Syt IV, but for kiss-and-run the Ca2+ sensitivities differed by a factor of only two. Syt thus regulates the choice between full fusion and kiss-and-run, with Ca2+ binding to the C2A and C2B domains playing an important role in this choice.


Assuntos
Proteínas de Ligação ao Cálcio , Membrana Celular/metabolismo , Exocitose , Fusão de Membrana , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Permeabilidade da Membrana Celular , Colforsina/farmacologia , Ligantes , Glicoproteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Células PC12 , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Sinaptotagminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA