Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol Res ; 2023: 3804605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767202

RESUMO

Background: Arising from T progenitor cells, T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor, accounting for 15% of childhood ALL and 25% of adult ALL. Composing of putative enhancers in close genomic proximity, super enhancer (SE) is critical for cell identity and the pathogenesis of multiple cancers. Belonging to the cytosolute linker protein group, FYB1 is essential for TCR signaling and extensively studied in terms of tumor pathogenesis and metastasis. Dissecting the role of FYN binding protein 1 (FYB1) in T-ALL holds the potential to improve the treatment outcome and prognosis of T-ALL. Methods: In this study, SEs were explored using public H3K27ac ChIP-seq data derived from T-ALL cell lines, AML cell lines and hematopoietic stem and progenitor cells (HSPCs). Downstream target of FYB1 gene was identified by RNA-seq. Effects of shRNA-mediated downregulation of FYB1 and immunoglobulin lambda-like polypeptide 1 (IGLL1) on self-renewal of T-ALL cells were evaluated in vitro and/or in vivo. Results: As an SE-driven gene, overexpression of FYB1 was observed in T-ALL, according to the Cancer Cell Line Encyclopedia database. In vitro, knocking down FYB1 led to comprised growth and enhanced apoptosis of T-ALL cells. In vivo, downregulation of FYB1 significantly decreased the disease burden by suppressing tumor growth and improved survival rate. Knocking down FYB1 resulted in significantly decreased expression of IGLL1 that was also an SE-driven gene in T-ALL. As a downstream target of FYB1, IGLL1 exerted similar role as FYB1 in inhibiting growth of T-ALL cells. Conclusion: Our results suggested that FYB1 gene played important role in regulating self-renewal of T-ALL cells by activating IGLL1, representing a promising therapeutic target for T-ALL patients.

2.
Hematology ; 28(1): 2247253, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594294

RESUMO

INTRODUCTION: B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent malignant tumor affecting children. While the majority of B-ALL patients (90%) experience successful recovery, early relapse cases of B-ALL continue to exhibit high mortality rates. MZ1, a novel inhibitor of Bromodomains and extra-terminal (BET) proteins, has demonstrated potent antitumor activity against hematological malignancies. The objective of this study was to examine the role and therapeutic potential of MZ1 in the treatment of B-ALL. METHODS: In order to ascertain the fundamental mechanism of MZ1, a sequence of in vitro assays was conducted on B-ALL cell lines, encompassing Cell Counting Kit 8 (CCK8) assay, Propidium iodide (PI) staining, and Annexin V/PI staining. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to examine protein and mRNA expression levels. Transcriptomic RNA sequencing (RNA-seq) was utilized to screen the target genes of MZ1, and lentiviral transfection was employed to establish stably-expressing/knockdown cell lines. RESULTS: MZ1 has been observed to induce the degradation of Bromodomain Containing 4 (BRD4), Bromodomain Containing 3 (BRD3), and Bromodomain Containing 2 (BRD2) in B-ALL cell strains, leading to inhibited cell growth and induction of cell apoptosis and cycle arrest in vitro. These findings suggest that MZ1 exhibits cytotoxic effects on two distinct molecular subtypes of B-ALL, namely 697 (TCF3/PBX1) and RS4;11 (MLL-AF4) B-ALL cell lines. Additionally, RNA-sequencing analysis revealed that MZ1 significantly downregulated the expression of Cyclin D3 (CCND3) gene in B-ALL cell lines, which in turn promoted cell apoptosis, blocked cell cycle, and caused cell proliferation inhibition. CONCLUSION: Our results suggest that MZ1 has potential anti-B-ALL effects and might be a novel therapeutic target.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteínas de Ciclo Celular/genética , Ciclina D3 , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição/genética
3.
Cell Death Dis ; 14(8): 518, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573405

RESUMO

One of the characteristics of leukemia is that it contains multiple rearrangements of signal transduction genes and overexpression of non-mutant genes, such as transcription factors. As an important regulator of hematopoietic stem cell development and erythropoiesis, LMO2 is considered an effective carcinogenic driver in T cell lines and a marker of poor prognosis in patients with AML with normal karyotype. LDB1 is a key factor in the transformation of thymocytes into T-ALL induced by LMO2, and enhances the stability of carcinogenic related proteins in leukemia. However, the function and mechanism of LMO2 and LDB1 in AML remains unclear. Herein, the LMO2 gene was knocked down to observe its effects on proliferation, survival, and colony formation of NB4, Kasumi-1 and K562 cell lines. Using mass spectrometry and IP experiments, our results showed the presence of LMO2/LDB1 protein complex in AML cell lines, which is consistent with previous studies. Furthermore, in vitro and in vivo experiments revealed that LDB1 is essential for the proliferation and survival of AML cell lines. Analysis of RNA-seq and ChIP-Seq results showed that LDB1 could regulate apoptosis-related genes, including LMO2. In LDB1-deficient AML cell lines, the overexpression of LMO2 partially compensates for the proliferation inhibition. In summary, our findings revealed that LDB1 played an important role in AML as an oncogene, and emphasize the potential importance of the LMO2/LDB1 complex in clinical treatment of patients with AML.


Assuntos
Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Eritropoese , Leucemia Mieloide Aguda/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Bioresour Technol ; 364: 128069, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36208827

RESUMO

In this study, mannitol and mannitol-rich seaweed were fermented to investigate the relationship between substrate reduction degree and hydrogen production performance. The results showed that acetate was required in mannitol fermentation with an optimum acetate/mannitol mass ratio of 1:5. Hydrogen production and yield of mannitol fermentation reached 123.76 mL and 2.12 mol/mol-mannitol, respectively, 42.02 % and 26.95 % higher than that of glucose, respectively. The acetate was fully assimilated and the butyrate selectivity reached 100 % in the effluent. Redox potential and electron distribution showed that mannitol increased the overall electron input from mannitol and acetate, leading to the increase in hydrogen and butyrate generation. Hydrogen yield reached 2.33 mol/mol-mannitol with brown algae hydrolysate, which was the highest ever reported. This study demonstrated that substrate with a higher reduction degree could yield higher hydrogen and showed the great application potential of brown algae fermentation for the co-production of hydrogen and butyrate.

5.
Cancer Biol Ther ; 23(1): 1-15, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36170346

RESUMO

Acute myeloid leukemia (AML) is a highly cancerous and aggressive hematologic disease with elevated levels of drug resistance and relapse resulting in high mortality. Recently, bromodomains and extra-terminal (BET) protein inhibitors have been extensively researched in hematological tumors as potential anticancer agents. MZ1 is a novel BET inhibitor that mediates selective proteins degradation and suppression of tumor growth through proteolysis-targeting chimeras (PROTAC) technology. Accordingly, this study aimed to investigate the role and therapeutic potential of MZ1 in AML. In this study, we first identified that AML patients with high BRD4 expression had poor overall survival than those with low expression group. MZ1 inhibited AML cell growth and induced apoptosis and cycle arrest in vitro. MZ1 induced degradation of BRD4, BRD3 and BRD2 in AML cell strains. Additionally, MZ1 also initiated the cleavage of poly-ADP-ribose polymerase (PARP), which showed cytotoxic effects on NB4 (PML-RARa), K562 (BCR-ABL), Kasumi-1 (AML1-ETO), and MV4-11 (MLL-AF4) cell lines representing different molecular subtypes of AML. In AML mouse leukemia model, MZ1 significantly decreased leukemia cell growth and increased the mouse survival time. According to the RNA-sequencing analysis, MZ1 led to c-Myc and ANP32B genes significant downregulation in AML cell lines. Knockdown of ANP32B promoted AML cell apoptosis and inhibited cell growth. Overall, our data indicated that MZ1 had broad anti-cancer effects on AML cell lines with different molecular lesions, which might be exploited as a novel therapeutic strategy for AML patients.


Assuntos
Antineoplásicos , Dipeptídeos , Compostos Heterocíclicos com 3 Anéis , Leucemia Mieloide Aguda , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteólise , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA , Fatores de Transcrição/metabolismo
6.
J Immunol Res ; 2022: 7912484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958877

RESUMO

Background: AML (acute myeloid leukemia) is a common hematological malignancy in children with poor treatment effects and poor prognosis. Recent studies have shown that as a novel BRD4 (bromodomain containing 4) PROTACs (proteolysis targeting chimeras) degrader, GNE-987 can slow down the growth of various tumors and increase apoptosis, with promising clinical prospects. However, the function and molecular mechanism of GNE-987 in AML remain unclear. This study is aimed at investigating the therapeutic effect of GNE-987 on AML and its underlying mechanism. Methods: The association between BRD4 and AML was assessed by studying public databases. After GNE-987 was added to AML cells, cell proliferation slowed down, the cycle was disturbed, and apoptosis increased. Western blotting was used to detect BRD2 (bromodomain containing 2), BRD3 (bromodomain containing 3), BRD4, and PARP (poly ADP-ribose polymerase) proteins. The effect of GNE-987 on AML cells was analyzed in vivo. RNA-seq (RNA sequencing) and ChIP-seq (chromatin immunoprecipitation sequencing) validated the function and molecular pathways of GNE-987 in processing AML. Results: BRD4 expression was significantly elevated in pediatric AML samples compared with healthy donors. GNE-987 inhibited AML cell proliferation by inhibiting the cell cycle and inducing apoptosis. BRD2, BRD3, and BRD4 were consistent with decreased VHL (Von Hippel Lindau) expression in AML cells. In an AML xenograft model, GNE-987 significantly reduced the hepatosplenic infiltration of leukemia cells and increased the mouse survival time. Based on analysis of RNA-seq and ChIP-seq analyses, GNE-987 could target multiple SE- (super-enhancer-) related genes, including LYL1 (lymphoblastic leukemia 1), to inhibit AML. Conclusions: GNE-987 had strong antitumor activity in AML. GNE-987 could effectively inhibit the expression of SE-related oncogenes including LYL1 in AML. Our results suggested that GNE-987 had broad prospects in the treatment of AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Proteínas de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Pathol Oncol Res ; 28: 1610447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832114

RESUMO

Acute myeloid leukemia (AML) represents an aggressive hematopoietic malignancy with a prognosis inferior to that of other leukemias. Recent targeted therapies offer new opportunities to achieve better treatment outcomes. However, due to the complex heterogeneity of AML, its prognosis remains dismal. In this study, we first identified the correlation between high expression of BRD4 and overall survival of patients with AML. Targeted degradation of BRD2, BRD3, and BRD4 proteins by dBET1, a proteolysis-targeting chimera (PROTAC) against the bromodomain and extra-terminal domain (BET) family members, showed cytotoxic effects on Kasumi (AML1-ETO), NB4 (PML-RARa), THP-1 (MLL-AF9), and MV4-11 (MLL-AF4) AML cell lines representing different molecular subtypes of AML. Furthermore, we determined that dBET1 treatment arrested cell cycling and enhanced apoptosis and c-MYC was identified as the downstream target. Collectively, our results indicated that dBET1 had broad anti-cancer effects on AML cell lines with different molecular lesions and provided more benefits to patients with AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intercelular , Leucemia Mieloide Aguda/patologia , Proteínas Nucleares/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-myc , Fatores de Transcrição/metabolismo
8.
J Hazard Mater ; 429: 128321, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236036

RESUMO

Effective detection of pollutant gases is vital for protection of natural environment and human health. There is an increasing demand for sensing devices that are equipped with high sensitivity, fast response/recovery speed, and remarkable selectivity. Particularly, attention is given to the designability of sensing materials with porous structures. Among diverse kinds of porous materials, metal-organic frameworks (MOFs) exhibit high porosity, high degree of crystallinity and exceptional chemical activity. Their strong host-guest interactions with guest molecules facilitate the application of MOFs in adsorption, catalysis and sensing systems. In particular, the tailorable framework/composition and potential for post-synthetic modification of MOFs endow them with widely promising application in gas sensing devices. In this review, we outlined the fundamental aspects and applications of MOFs for gas sensors, and discussed various techniques of monitoring gases based on MOFs as functional materials. Insights and perspectives for further challenges faced by MOFs are discussed in the end.


Assuntos
Estruturas Metalorgânicas , Adsorção , Catálise , Gases , Humanos , Estruturas Metalorgânicas/química , Porosidade
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(2): 433-438, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33812411

RESUMO

OBJECTIVE: To investigate the significance of low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) in the Wnt/ß-catenin signaling pathway in the pathogenesis and prognosis of childhood acute lymphoblastic leukemia (ALL). METHODS: A total of 43 children who were newly diagnosed and achieved complete remission after remission induction therapy were enrolled. The children before treatment were included in incipient group, and after treatment when achieved complete remission included in remission group. A total of 39 children with immune thrombocytopenia were enrolled in control group. Three milliliter bone marrow samples were collected from above-mentioned each group. QRT-PCR was used to determine the mRNA expression of LRP5 and LRP6 in blood mononuclear cells of bone marrow. Western blot was used to detect the protein expression of LRP5 and LRP6. According to the protein expression levels of LRP5 and LRP6, the children were divided into low-expression group and high-expression group, and the clinical biological characteristics were compared between these two groups. Survival analysis was performed by Kaplan-Meier method. RESULTS: Both mRNA and protein expression levels of LRP5 and 6 were upregulated in the incipient group compared with the control and remission group (P<0.05). The mRNA and protein expressions of LRP5 and LRP6 in the high-risk group were higher than those in the medium-risk group (P<0.05), it is the same as in the medium-risk group than the low-risk group (P<0.05). The mRNA and protein expressions of LRP5 and 6 positively correlated with risk degree in the incipient group (rLRP5 mRNA=0.84, P<0.05; rLRP6 mRNA=0.66, P<0.05; rLRP5 protein=0.82, P<0.05; rLRP6 protein=0.76, P<0.05). The white blood cell count and lactate dehydrogenase in LRP5 and LRP6 high expression group were significantly higher than those in low expression group (P<0.05), while there was no significant difference in other biological characteristics. Kaplan-meier survival analysis showed that in the 43 children 3-year overall survival rate and event-free survival rate was (91.7±4.7)% and (87.6±5.2)%, respectively. CONCLUSION: The high expression of LRP5/6 may be one of the pathogenesis of childhood ALL, and the degree of LRP5/6 increase may be related to the risk level.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Via de Sinalização Wnt , Criança , Humanos , Lipoproteínas LDL , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Receptores de LDL , beta Catenina/metabolismo
10.
Sci China Life Sci ; 63(6): 875-885, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266609

RESUMO

Brain-to-brain interfaces (BtBIs) hold exciting potentials for direct communication between individual brains. However, technical challenges often limit their performance in rapid information transfer. Here, we demonstrate an optical brain-to-brain interface that transmits information regarding locomotor speed from one mouse to another and allows precise, real-time control of locomotion across animals with high information transfer rate. We found that the activity of the genetically identified neuromedin B (NMB) neurons within the nucleus incertus (NI) precisely predicts and critically controls locomotor speed. By optically recording Ca2+ signals from the NI of a "Master" mouse and converting them to patterned optogenetic stimulations of the NI of an "Avatar" mouse, the BtBI directed the Avatar mice to closely mimic the locomotion of their Masters with information transfer rate about two orders of magnitude higher than previous BtBIs. These results thus provide proof-of-concept that optical BtBIs can rapidly transmit neural information and control dynamic behaviors across individuals.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Locomoção/fisiologia , Imagem Óptica/métodos , Animais , Controle Comportamental , Comportamento Animal/fisiologia , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Simulação por Computador , Dependovirus/metabolismo , Células HEK293 , Humanos , Cinética , Camundongos , Modelos Biológicos , Neurocinina B/análogos & derivados , Neurocinina B/fisiologia , Neurônios/fisiologia , Núcleos da Rafe/fisiologia , Máquina de Vetores de Suporte , Transfecção
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(5): 411-414, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31104653

RESUMO

OBJECTIVE: To study the significance of dishevelled (DVL) proteins in the Wnt signaling pathway in the pathogenesis and prognosis of childhood acute lymphoblastic leukemia (ALL). METHODS: A total of 33 children with new-onset ALL were enrolled as the case group. According to the degree of risk, they were divided into 3 groups: low-risk (n=14), intermediate-risk (n=5) and high-risk (n=14). A total of 29 children with immune thrombocytopenia were enrolled as the control group. At diagnosis and on day 33 of induction therapy, 2 mL bone marrow samples were collected from the case and control groups, and qRT-PCR was used to measure the mRNA expression of DVL1, DVL2 and DVL3 in blood cells of bone marrow. RESULTS: The mRNA expression of DVL1, DVL2 and DVL3 in the case group in the incipient stage was significantly higher than that in the remission stage and the control group (P<0.05). Compared with the control group, the case group had a significant increase in the mRNA expression of DVL2 in the remission stage (P<0.05). The mRNA expression of DVL2 was significantly higher than that of DVL1 and DVL3 in both remission and incipient stages (P<0.05). The high- and intermediate-risk groups had significantly higher mRNA expression of DVL1 and DVL2 than the low-risk group (P<0.05). The mRNA expression of DVL2 was significantly higher than that of DVL1 and DVL3 in the low-, intermediate- and high-risk groups (P<0.05). CONCLUSIONS: The change in the expression of DVL, especially DVL2, in the Wnt signal pathway has certain significance in the pathogenesis and prognosis of childhood ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Via de Sinalização Wnt , Criança , Proteínas Desgrenhadas , Humanos , Fosfoproteínas
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 32(2): 223-227, 2018 02 15.
Artigo em Chinês | MEDLINE | ID: mdl-29806416

RESUMO

Objective: To investigate the effect of serum on the differentiation of neural stem cells. Methods: The neural stem cells were isolated from the embryonic hippocampus tissues of Sprague Dawley rats at 14 day of pregnancy. After culturing and passaging, the 3rd generation cells were identified by immunocytochemical staining. Then, the cells were divided into 3 groups according to the concentrations of fetal bovine serum (FBS) used in the differentiation cell culture medium: 5% (group A), 1% (group B), 0 (group C), respectively. The other components of the culture media in 3 groups were the same. Cell viability was determined by using the Live/Dead cell staining at 8 days; the expressions of glial cell marker [glial fibrillary acidic protein (GFAP)] and neuronal marker (ß-Ⅲ Tubulin) were determined and analyzed by immunocytochemical staining and real-time fluorescent PCR at 4 and 8 days of culture. Results: Based on cell morphology and immunocytochemical staining, neural stem cells were identified. Cells were growing well with no death in all groups. With decreasing FBS concentration, the expression of GFAP was significantly decreased on both protein and mRNA level, whereas the expression of ß-Ⅲ Tubulin was evidently increased. The staining of each group at 8 days was more obvious than that at 4 days. There were significant differences in mRNA expressions of GFAP and ß-Ⅲ Tubulin at 4 and 8 days between groups ( P<0.05). Conclusion: Serum can promote the differentiation of neural stem cells into glial cells. At the same time, it inhibits the differentiation of neural stem cells into neurons, the lower the serum concentration, the smaller the effect.


Assuntos
Proteína Glial Fibrilar Ácida , Células-Tronco Neurais , Soro , Animais , Contagem de Células , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Neurônios , Gravidez , Ratos , Ratos Sprague-Dawley
13.
J Med Chem ; 59(16): 7478-96, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27527804

RESUMO

Analogues structurally related to anaplastic lymphoma kinase (ALK) inhibitor 1 were optimized for metabolic stability. The results from this endeavor not only led to improved metabolic stability, pharmacokinetic parameters, and in vitro activity against clinically derived resistance mutations but also led to the incorporation of activity for focal adhesion kinase (FAK). FAK activation, via amplification and/or overexpression, is characteristic of multiple invasive solid tumors and metastasis. The discovery of the clinical stage, dual FAK/ALK inhibitor 27b, including details surrounding SAR, in vitro/in vivo pharmacology, and pharmacokinetics, is reported herein.


Assuntos
Benzamidas/farmacologia , Benzocicloeptenos/farmacologia , Descoberta de Drogas , Quinase 1 de Adesão Focal/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Administração Oral , Quinase do Linfoma Anaplásico , Animais , Benzamidas/administração & dosagem , Benzamidas/química , Benzocicloeptenos/administração & dosagem , Benzocicloeptenos/química , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Quinase 1 de Adesão Focal/metabolismo , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade
14.
Oxid Med Cell Longev ; 2016: 1451676, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057269

RESUMO

Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA.


Assuntos
Hipertrofia/etiologia , Ácido Palmítico/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipertrofia/prevenção & controle , Imidazóis/farmacologia , Indóis/farmacologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
Bioorg Med Chem Lett ; 25(5): 1047-52, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25655723

RESUMO

The diastereoselective synthesis and biological activity of piperidine-3,4-diol and piperidine-3-ol-derived pyrrolotriazine inhibitors of anaplastic lymphoma kinase (ALK) are described. Although piperidine-3,4-diol and piperidine-3-ol derivatives showed comparable in vitro ALK activity, the latter subset of inhibitors demonstrated improved physiochemical and pharmacokinetic properties. Furthermore, the stereochemistry of the C3 and C4 centers had a marked impact on the in vivo inhibition of ALK autophosphorylation. Thus, trans-4-aryl-piperidine-3-ols (22) were more potent than the cis diastereomers (20).


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Pirróis/química , Pirróis/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Triazinas/química , Triazinas/uso terapêutico , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Linfoma Anaplásico de Células Grandes/enzimologia , Camundongos SCID , Modelos Moleculares , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Pirróis/farmacocinética , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/metabolismo , Triazinas/farmacocinética
16.
Assay Drug Dev Technol ; 11(7): 449-56, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23992119

RESUMO

Posttranslational modification of histone proteins in eukaryotes plays an important role in gene transcription and chromatin structure. Dysregulation of the enzymes involved in histone modification has been linked to many cancer forms, making this target class a potential new area for therapeutics. A reliable assay to monitor small-molecule inhibition of various epigenetic enzymes should play a critical role in drug discovery to fight cancer. However, it has been challenging to develop cell-based assays for high-throughput screening (HTS) and compound profiling. Recently, two homogeneous cell-based assay kits using the AlphaLISA(®) and LanthaScreen(®) technologies to detect trimethyl histone H3 Lysine 27 have become commercially available, and a heterogeneous cell assay with modified dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA(®)) format has been reported. To compare their pros and cons, we evaluated, optimized, and validated these three assay formats in three different cell lines and compared their activities with traditional Western blot detection of histone methylation inhibition by using commercial and in-house small-molecule inhibitors. Our data indicate that, although all four formats produced acceptable results, the homogeneous AlphaLISA assay was best suited for HTS and compound profiling due to its wider window and ease of automation. The DELFIA and Western blot assays were useful as validation tools to confirm the cell activities and eliminate potential false-positive compounds.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Bioensaio/instrumentação , Histonas/análise , Imunoensaio/instrumentação , Neoplasias Experimentais/química , Análise Serial de Tecidos/instrumentação , Técnicas Biossensoriais/instrumentação , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Falha de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Antagonistas dos Receptores Histamínicos H3/administração & dosagem , Histonas/antagonistas & inibidores , Humanos , Metilação/efeitos dos fármacos , Neoplasias Experimentais/metabolismo
17.
Bioorg Med Chem Lett ; 22(18): 5827-32, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22901386

RESUMO

A series of polyhydric, amino alcohol and tricyclic derivatives were facilely synthesized by D-ring modification of isosteviol. These compounds were screened for their cytotoxic activities against four human tumor cell lines in vitro. Among them, the 15-α-aminomethyl-16-ß-hydroxyl isosteviol 23 exhibits significant cytotoxicity superior to the positive control (cisplatin) against EC9706, PC-3 and HCT-116 cell lines.


Assuntos
Antineoplásicos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Desenho de Fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos do Tipo Caurano/síntese química , Diterpenos do Tipo Caurano/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
18.
J Med Chem ; 55(10): 4580-93, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22564207

RESUMO

Anaplastic lymphoma kinase (ALK) is a promising therapeutic target for the treatment of cancer, supported by considerable favorable preclinical and clinical activities over the past several years and culminating in the recent FDA approval of the ALK inhibitor crizotinib. Through a series of targeted modifications on an ALK inhibitor diaminopyrimidine scaffold, our research group has driven improvements in ALK potency, kinase selectivity, and overall pharmaceutical properties. Optimization of this scaffold has led to the identification of a potent and efficacious inhibitor of ALK, 25b. A striking feature of 25b over previously described ALK inhibitors is its >600-fold selectivity over insulin receptor (IR), a closely related kinase family member. Most importantly, 25b exhibited dose proportional escalation in rat compared to compound 3 which suffered dose limiting absorption preventing further advancement. Compound 25b exhibited significant in vivo antitumor efficacy when dosed orally in an ALK-positive ALCL tumor xenograft model in SCID mice, warranting further assessment in advanced preclinical models.


Assuntos
Antineoplásicos/síntese química , Cicloeptanos/síntese química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Administração Oral , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cicloeptanos/farmacocinética , Cicloeptanos/farmacologia , Cães , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Feminino , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Camundongos , Camundongos SCID , Modelos Moleculares , Morfolinas/síntese química , Morfolinas/farmacocinética , Morfolinas/farmacologia , Fosforilação , Piperazinas/síntese química , Piperazinas/farmacocinética , Piperazinas/farmacologia , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/metabolismo , Receptor de Insulina/antagonistas & inibidores , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Med Chem ; 55(1): 115-25, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22141319

RESUMO

Chemical strategies to mitigate cytochrome P450-mediated bioactivation of novel 2,7-disubstituted pyrrolo[2,1-f][1,2,4]triazine ALK inhibitors are described along with synthesis and biological activity. Piperidine-derived analogues showing minimal microsomal reactive metabolite formation were discovered. Potent, selective, and metabolically stable ALK inhibitors from this class were identified, and an orally bioavailable compound (32) with antitumor efficacy in ALK-driven xenografts in mouse models was extensively characterized.


Assuntos
Compostos de Anilina/síntese química , Antineoplásicos/síntese química , Pirróis/síntese química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Triazinas/síntese química , Administração Oral , Quinase do Linfoma Anaplásico , Compostos de Anilina/farmacocinética , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Disponibilidade Biológica , Técnicas In Vitro , Camundongos , Camundongos SCID , Microssomos Hepáticos/metabolismo , Pirróis/farmacocinética , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Triazinas/farmacocinética , Triazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Cancer Ther ; 11(3): 670-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22203728

RESUMO

Anaplastic lymphoma kinase (ALK) is constitutively activated in a number of human cancer types due to chromosomal translocations, point mutations, and gene amplification and has emerged as an excellent molecular target for cancer therapy. Here we report the identification and preclinical characterization of CEP-28122, a highly potent and selective orally active ALK inhibitor. CEP-28122 is a potent inhibitor of recombinant ALK activity and cellular ALK tyrosine phosphorylation. It induced concentration-dependent growth inhibition/cytotoxicity of ALK-positive anaplastic large-cell lymphoma (ALCL), non-small cell lung cancer (NSCLC), and neuroblastoma cells, and displayed dose-dependent inhibition of ALK tyrosine phosphorylation in tumor xenografts in mice, with substantial target inhibition (>90%) for more than 12 hours following single oral dosing at 30 mg/kg. Dose-dependent antitumor activity was observed in ALK-positive ALCL, NSCLC, and neuroblastoma tumor xenografts in mice administered CEP-28122 orally, with complete/near complete tumor regressions observed following treatment at doses of 30 mg/kg twice daily or higher. Treatment of mice bearing Sup-M2 tumor xenografts for 4 weeks and primary human ALCL tumor grafts for 2 weeks at 55 or 100 mg/kg twice daily led to sustained tumor regression in all mice, with no tumor reemergence for more than 60 days postcessation of treatment. Conversely, CEP-28122 displayed marginal antitumor activity against ALK-negative human tumor xenografts under the same dosing regimens. Administration of CEP-28122 was well tolerated in mice and rats. In summary, CEP-28122 is a highly potent and selective orally active ALK inhibitor with a favorable pharmaceutical and pharmacokinetic profile and robust and selective pharmacologic efficacy against ALK-positive human cancer cells and tumor xenograft models in mice.


Assuntos
Antineoplásicos/farmacologia , Benzocicloeptenos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Administração Oral , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzocicloeptenos/química , Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Immunoblotting , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/química , Receptores Proteína Tirosina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA