Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Ann Rheum Dis ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777379

RESUMO

OBJECTIVE: Tissue-resident memory cells (Trm) are a subset of T cells residing persistently and long-term within specific tissues that contribute to persistent inflammation and tissue damage. We characterised the phenotype and function of Trm and the role of CD103 in primary Sjogren's syndrome (pSS). METHODS: In both pSS and non-pSS sicca syndrome patients, we examined Trm frequency, cytokine production in salivary glands (SG) and peripheral blood (PB). We also analysed Trm-related gene expression in SG biopsies through bulk and single-cell RNA sequencing (scRNAseq). Additionally, we investigated Trm properties in an immunisation-induced animal model of pSS (experimental SS, ESS) mouse model and assessed the effects of Trm inhibition via intraglandular anti-CD103 monoclonal antibody administration. RESULTS: Transcriptomic pSS SG showed an upregulation of genes associated with tissue recruitment and long-term survival of Trm cells, confirmed by a higher frequency of CD8+CD103+CD69+ cells in pSS SG, compared with non-specific sialadenitis (nSS). In SG, CD8+ CD103+ Trm contributed to the secretion of granzyme-B and interferon-γ, CD8+ Trm cells were localised within inflammatory infiltrates, where PD1+CD8+ T cells were also increased compared with nSS and MALT lymphoma. scRNAseq of PB and pSS SG T cells confirmed expression of CD69, ITGAE, GZMB, GZMK and HLA-DRB1 among CD3+CD8+ SG T cells. In the SG of ESS, CD8+CD69+CD103+ Trm producing Granzyme B progressively expanded. However, intraglandular blockade of CD103 in ESS reduced Trm, reduced glandular damage and improved salivary flow. CONCLUSIONS: CD103+CD8+Trm cells are expanded in the SG of pSS and ESS, participate in tissue inflammation and can be therapeutically targeted.

2.
Clin Immunol ; 263: 110205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575044

RESUMO

Increasing clinical data show that the imbalance of host metallome is closely associated with different kinds of disease, however, the intrinsic mechanisms of action of metals in immunity and pathogenesis of disease remain largely undefined. There is lack of multiplexed profiling system to integrate the metalloproteome-immunoproteome information at systemic level for exploring the roles of metals in immunity and disease pathogenesis. In this study, we build up a metal-coding assisted multiplexed proteome assay platform for serum metalloproteomic and immunoproteomic profiling. By taking COVID-19 as a showcase, we unbiasedly uncovered the most evident modulation of iron-related proteins, i.e., Ft and Tf, in serum of severe COVID-19 patients, and the value of Ft/Tf could work as a robust biomarker for COVID-19 severity stratification, which overtakes the well-established clinical risk factors (cytokines). We further uncovered a tight association of transferrin with inflammation mediator IL-10 in COVID-19 patients, which was proved to be mainly governed by the monocyte/macrophage of liver, shedding light on new pathophysiological and immune regulatory mechanisms of COVID-19 disease. We finally validated the beneficial effects of iron chelators as anti-viral agents in SARS-CoV-2-infected K18-hACE2 mice through modulation of iron dyshomeostasis and alleviating inflammation response. Our findings highlight the critical role of liver-mediated iron dysregulation in COVID-19 disease severity, providing solid evidence on the involvement of iron-related proteins in COVID-19 pathophysiology and immunity.


Assuntos
COVID-19 , Ferro , Proteoma , SARS-CoV-2 , COVID-19/imunologia , Humanos , Animais , SARS-CoV-2/imunologia , Camundongos , Ferro/metabolismo , Proteômica/métodos , Transferrina/metabolismo , Metaloproteínas/imunologia , Metaloproteínas/metabolismo , Masculino , Feminino , Biomarcadores/sangue , Biomarcadores/metabolismo , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Pessoa de Meia-Idade
3.
Ann Rheum Dis ; 83(5): 576-588, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38302261

RESUMO

OBJECTIVES: B10 and B10pro cells suppress immune responses via secreting interleukin (IL)-10. However, their regulators and underlying mechanisms, especially in human autoimmune diseases, are elusive. This study aimed to address these questions in rheumatoid arthritis (RA), one of the most common highly disabling autoimmune diseases. METHODS: The frequencies and functions of B10 and B10pro cells in healthy individuals and patients with RA were first analysed. The effects of proinflammatory cytokines, particularly tumour necrosis factor (TNF)-α on the quantity, stability and pathogenic phenotype of these cells, were then assessed in patients with RA before and after anti-TNF therapy. The underlying mechanisms were further investigated by scRNA-seq database reanalysis, transcriptome sequencing, TNF-α-/- and B cell-specific SHIP-1-/- mouse disease model studies. RESULTS: TNF-α was a key determinant for B10 cells. TNF-α elicited the proinflammatory feature of B10 and B10pro cells by downregulating IL-10, and upregulating interferon-γ and IL-17A. In patients with RA, B10 and B10pro cells were impaired with exacerbated proinflammatory phenotype, while anti-TNF therapy potently restored their frequencies and immunosuppressive functions, consistent with the increased B10 cells in TNF-α-/- mice. Mechanistically, TNF-α diminished B10 and B10pro cells by inhibiting their glycolysis and proliferation. TNF-α also regulated the phosphatidylinositol phosphate signalling of B10 and B10pro cells and dampened the expression of SHIP-1, a dominant phosphatidylinositol phosphatase regulator of these cells. CONCLUSIONS: TNF-α provoked the proinflammatory phenotype of B10 and B10pro cells by disturbing SHIP-1 in RA, contributing to the disease development. Reinstating the immunosuppressive property of B10 and B10pro cells might represent novel therapeutic approaches for RA.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Linfócitos B Reguladores , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Linfócitos B Reguladores/metabolismo , Fenótipo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
4.
J Leukoc Biol ; 115(1): 57-67, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134025

RESUMO

Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.


Assuntos
Síndrome de Sjogren , Humanos , Glândulas Salivares/patologia , Células Epiteliais/metabolismo , Epitélio/patologia , Inflamação/patologia
5.
Clin Immunol ; 256: 109803, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821073

RESUMO

Anti-phospholipid autoantibodies are a group of antibodies that can specifically bind to anionic phospholipids and phospholipid protein complexes. Recent studies have reported elevated serum anti-phospholipid autoantibody levels in patients with antiphospholipid syndrome, systemic lupus erythematosus, rheumatoid arthritis, metabolic disorders, malaria, SARS-CoV-2 infection, obstetric diseases and cardiovascular diseases. However, the underlying mechanisms of anti-phospholipid autoantibodies in disease pathogenesis remain largely unclear. Emerging evidence indicate that anti-phospholipid autoantibodies modulate NETs formation, monocyte activation, blockade of apoptotic cell phagocytosis in macrophages, complement activation, dendritic cell activation and vascular endothelial cell activation. Herein, we provide an update on recent advances in elucidating the effector mechanisms of anti-phospholipid autoantibodies in the pathogenesis of various diseases, which may facilitate the development of potential therapeutic targets for the treatment of anti-phospholipid autoantibody-related disorders.


Assuntos
Síndrome Antifosfolipídica , Lúpus Eritematoso Sistêmico , Humanos , Autoanticorpos , Anticorpos Antifosfolipídeos , Macrófagos
7.
Cell Mol Immunol ; 20(8): 881-894, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291237

RESUMO

Autoantibodies produced by B cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). However, both the cellular source of antiphospholipid antibodies and their contributions to the development of lupus nephritis (LN) remain largely unclear. Here, we report a pathogenic role of anti-phosphatidylserine (PS) autoantibodies in the development of LN. Elevated serum PS-specific IgG levels were measured in model mice and SLE patients, especially in those with LN. PS-specific IgG accumulation was found in the kidney biopsies of LN patients. Both transfer of SLE PS-specific IgG and PS immunization triggered lupus-like glomerular immune complex deposition in recipient mice. ELISPOT analysis identified B1a cells as the main cell type that secretes PS-specific IgG in both lupus model mice and patients. Adoptive transfer of PS-specific B1a cells accelerated the PS-specific autoimmune response and renal damage in recipient lupus model mice, whereas depletion of B1a cells attenuated lupus progression. In culture, PS-specific B1a cells were significantly expanded upon treatment with chromatin components, while blockade of TLR signal cascades by DNase I digestion and inhibitory ODN 2088 or R406 treatment profoundly abrogated chromatin-induced PS-specific IgG secretion by lupus B1a cells. Thus, our study has demonstrated that the anti-PS autoantibodies produced by B1 cells contribute to lupus nephritis development. Our findings that blockade of the TLR/Syk signaling cascade inhibits PS-specific B1-cell expansion provide new insights into lupus pathogenesis and may facilitate the development of novel therapeutic targets for the treatment of LN in SLE.


Assuntos
Subpopulações de Linfócitos B , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Camundongos , Animais , Subpopulações de Linfócitos B/metabolismo , Autoanticorpos , Anticorpos Antifosfolipídeos , Cromatina , Imunoglobulina G
8.
Biomark Res ; 11(1): 36, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005677

RESUMO

Interleukin-25 (IL-25), also known as IL-17E, is a cytokine belonging to the IL-17 family. IL-25 is abundantly expressed by Th2 cells and various kinds of epithelial cells. IL-25 is an alarm signal generated upon cell injury or tissue damage to activate immune cells through the interaction with IL-17RA and IL-17RB receptors. The binding of IL-25 to IL-17RA/IL-17RB complex not only initiates and maintains type 2 immunity but also regulates other immune cells (e.g., macrophages and mast cells) via various signaling pathways. It has been well-documented that IL-25 is critically involved in the development of allergic disorders (e.g., asthma). However, the roles of IL-25 in the pathogenesis of other diseases and the underlying mechanisms are still unclear. This review presents current evidence on the roles of IL-25 in cancers, allergic disorders, and autoimmune diseases. Moreover, we discuss the unanswered key questions underlying IL-25-mediated disease pathology, which will provide new insights into the targeted therapy of this cytokine in clinical treatment.

9.
Inflamm Res ; 71(12): 1577-1588, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36301339

RESUMO

BACKGROUND: Recent studies have revealed a role of the ligand for glucocorticoid-induced TNFR family-related protein (GITRL) in mediating functional dysregulations of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of primary Sjögren syndrome (pSS), but the underlying molecular mechanism is largely unclear. In this study, we aimed to elucidate GITRL-mediated signaling pathways in MDSCs during the development of experimental SS (ESS). METHODS: MDSCs were stimulated with recombinant GITRL, the activation of PTEN, AKT and STAT3 in MDSCs was analyzed by Western blot. MDSCs with different treatment were adoptively transferred to ESS mice. ELISA was used to detect the level of autoantibodies. Proportions of Th1 and Th17 cells were examined by flow cytometry. Histological evaluation of glandular destruction was analyzed by hematoxylin and eosin (HE) staining. The interaction of GITR, TRAF3 and PP2A was detected by CoIP. RESULTS: Upon the engagement of GITR on MDSCs, PTEN was activated and led to the inhibition of downstream AKT/STAT3 signaling pathway, therefore, resulting in the impaired immunosuppressive function of MDSCs. In ESS mice, blocking the activity of PTEN could efficiently restore the immunomodulatory effect of MDSCs and alleviate the progression of ESS. Furthermore, TRAF3 was found to bind to GITR, and then recruited PP2A to dephosphorylate PTEN, thus enhancing the activity of PTEN. CONCLUSION: This study elucidated the molecular mechanism underlying the effect of GITRL in regulating the function of MDSCs, which may provide a new therapeutic target for the treatment of pSS.


Assuntos
Células Supressoras Mieloides , Síndrome de Sjogren , Fatores de Necrose Tumoral , Animais , Camundongos , Imunossupressores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator 3 Associado a Receptor de TNF/metabolismo , Fatores de Necrose Tumoral/metabolismo
10.
World J Clin Cases ; 10(18): 6128-6135, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35949833

RESUMO

BACKGROUND: Cervical pregnancy is increasing in morbidity, and a definite diagnosis in early stages is challenging due to its specific onset site. Surgery is the mainstay of treatment for cervical pregnancy, but it may result in the loss of natural fertility. Therefore, it is a great challenge to pursue a safe and effective treatment for cervical pregnancy. CASE SUMMARY: We report the case of a cervical pregnancy successfully treated by ultrasound-guided cervical-intramuscular lauromacrogol injection combined with hysteroscopy. A 23-year-old woman with minor irregular vaginal bleeding was admitted to our department with suspected ectopic pregnancy. Transvaginal ultrasound revealed a gestational sac (approximately 22 mm x 13 mm) situated in the cervical canal with a yolk sac and blood flow signals. No cardiac activity was detected. Serum beta progesterone was 17.06 ng/mL, and serum beta human chorionic gonadotropin (ß-HCG) was 5077.0 IU/L. The patient was diagnosed with cervical pregnancy. She was treated by ultrasound-guided cervical-intramuscular injections of lauromacrogol (3 mL) in combination with aborting under hysteroscopic visualization. A gradual decrease in ß-HCG levels and normal ultrasound findings were observed. Postoperative pathologic examination showed the presence of villi and changes in the endometrium in the secretory phase. The patient was discharged on day 6, and her ß-HCG level was 0.67 mIU/mL after 1 wk. There was no statistical difference between baseline and 1-week postoperative data in terms of serum indices including liver function, renal function, and routine blood analysis after treatment. The patient subsequently became pregnant 2 mo later and no abnormalities were detected on routine screening during pregnancy. CONCLUSION: Ultrasound-guided cervical-intramuscular lauromacrogol injection combined with hysteroscopy may be effective and safe in the treatment of cervical pregnancy.

11.
Clin Transl Med ; 12(3): e781, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35343082

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that involves T follicular helper (TFH ) cell-mediated humoral immune responses. Absent in melanoma 2 (human AIM2 and murine Aim2) is a well-known component of the inflammasome in the innate immune system. Surprisingly, we observed that in SLE patients, upregulated levels of AIM2 expression were found in peripheral blood and skin lesions, with the highest levels detected in TFH -like cells. In the CD4cre Aim2fl/fl conditional knockout mice, a markedly reduced TFH cell response was observed, with significantly lower levels of serum autoantibodies and proteinuria, as well as profoundly reduced renal IgG deposition in pristane-induced lupus mice. Mechanistically, IL-21 was found to recruit hydroxymethyltransferase ten-eleven translocation 2 (TET2) to the AIM2 promoter, resulting in DNA demethylation and increased transcription of AIM2. In addition, AIM2 could regulate c-MAF expression to enhance IL-21 production, which consequently promoted TFH cell differentiation. Our results have identified a role of AIM2 in promoting the TFH cell response and further revealed that the IL-21-TET2-AIM2-c-MAF signalling pathway is dysregulated in lupus pathogenesis, which provides a potential therapeutic target for SLE.


Assuntos
Dioxigenases , Lúpus Eritematoso Sistêmico , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Interleucinas/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-maf/genética , Células T Auxiliares Foliculares
12.
Cytokine Growth Factor Rev ; 64: 57-70, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34916133

RESUMO

B cells play a pivotal role in the pathogenesis of autoimmune disease (AD) by the production of autoantibodies, secretion of cytokines and presentation of autoantigens. As a pro-survival factor mainly produced by myeloid cells, B cell-activating factor (BAFF) maintains B cell maturation and homeostasis at various B cell differentiation stages. Under autoimmune conditions, BAFF acts on autoreactive B cells that have escaped checkpoint apoptosis from negative selection. Numerous studies have shown increased levels of BAFF in patients with ADs and in mouse models with ADs wherein the production of autoantibodies is a prominent feature of immunopathology. Compelling evidence has indicated a key function of BAFF in driving autoreactive B cell response during autoimmune progression. Recent clinical studies have demonstrated BAFF as a therapeutic target in various ADs. Here, we review recent findings on BAFF expression and its effector mechanisms in autoimmune pathogenesis as well as newly developed therapeutic targeting of BAFF in the treatment of ADs.


Assuntos
Doenças Autoimunes , Fator Ativador de Células B , Animais , Autoanticorpos , Doenças Autoimunes/tratamento farmacológico , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/uso terapêutico , Linfócitos B , Humanos , Interleucina-4/metabolismo , Ativação Linfocitária , Camundongos
13.
Signal Transduct Target Ther ; 6(1): 341, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521812

RESUMO

Absent in melanoma 2 (AIM2) has been reported to be a component of inflammasomes in innate immune cells. Surprisingly, AIM2 is expressed by B cells, and higher AIM2 expression is observed in the B cells from lupus patients. To date, the inflammasome-independent function of AIM2 in B cells remains unclear. Here, we report increased expression of AIM2 in human tonsil memory and germinal center (GC) B cells and in memory B cells and plasma cells from the circulation and skin lesions of lupus patients. Conditional knockout of AIM2 in B cells reduces the CD19+ B-cell frequency in lymph nodes and spleens, and dampens KLH-induced IgG1-antibody production. In a pristane-induced mouse model of lupus, AIM2 deficiency in B cells attenuates lupus symptoms and reduces the frequency of GC B cells, T follicular helper (Tfh) cells, plasmablast cells, and plasma cells. Furthermore, the loss of AIM2 in human B cells leads to the increased expression of Blimp-1 and reduces the expression of Bcl-6. However, the silencing of Blimp-1 and Bcl-6 has no significant effect on AIM2 expression, indicating that AIM2 might be the upstream regulator for Blimp-1 and Bcl-6. In addition, IL-10 is found to upregulate AIM2 expression via DNA demethylation. Together, our findings reveal that AIM2 is highly expressed in the B cells of lupus patients and promotes B-cell differentiation by modulating the Bcl-6-Blimp-1 axis, providing a novel target for SLE treatment.


Assuntos
Proteínas de Ligação a DNA/genética , Lúpus Eritematoso Sistêmico/genética , Células B de Memória/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Tonsila Faríngea/metabolismo , Tonsila Faríngea/patologia , Animais , Antígenos CD19/genética , Diferenciação Celular/genética , Metilação de DNA/genética , Modelos Animais de Doenças , Centro Germinativo/imunologia , Humanos , Imunidade Inata/genética , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Baço/imunologia , Baço/metabolismo , Terpenos/toxicidade
14.
Front Immunol ; 12: 684999, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168653

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease characterized by lymphocytic infiltration and tissue destruction of exocrine glands such as salivary glands. Although the formation of ectopic lymphoid tissue in exocrine glands and overproduction of autoantibodies by autoreactive B cells highlight the critical involvement of B cells in disease development, the precise roles of various B cell subsets in pSS pathogenesis remain partially understood. Current studies have identified several novel B cell subsets with multiple functions in pSS, among which autoreactive age-associated B cells, and plasma cells with augmented autoantibody production contribute to the disease progression. In addition, tissue-resident Fc Receptor-Like 4 (FcRL4)+ B cell subset with enhanced pro-inflammatory cytokine production serves as a key driver in pSS patients with mucosa-associated lymphoid tissue (MALT)-lymphomas. Recently, regulatory B (Breg) cells with impaired immunosuppressive functions are found negatively correlated with T follicular helper (Tfh) cells in pSS patients. Further studies have revealed a pivotal role of Breg cells in constraining Tfh response in autoimmune pathogenesis. This review provides an overview of recent advances in the identification of pathogenic B cell subsets and Breg cells, as well as new development of B-cell targeted therapies in pSS patients.


Assuntos
Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Plasmócitos/imunologia , Receptores Fc/metabolismo , Síndrome de Sjogren/etiologia , Biomarcadores , Citocinas/metabolismo , Suscetibilidade a Doenças , Humanos , Linfoma de Zona Marginal Tipo Células B/patologia , Plasmócitos/metabolismo , Receptores Fc/genética , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Células T Auxiliares Foliculares/imunologia
15.
Clin Transl Immunology ; 10(4): e1277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968407

RESUMO

OBJECTIVES: This study aims to determine a role of interleukin-17A (IL-17) in salivary gland (SG) dysfunction and therapeutic effects of targeting IL-17 in SG for treating autoimmune sialadenitis in primary Sjögren's syndrome (pSS). METHODS: Salivary IL-17 levels and IL-17-secreting cells in labial glands of pSS patients were examined. Kinetic changes of IL-17-producing cells in SG from mice with experimental Sjögren's syndrome (ESS) were analysed. To determine a role of IL-17 in salivary secretion, IL-17-deficient mice and constructed chimeric mice with IL-17 receptor C (IL-17RC) deficiency in non-hematopoietic and hematopoietic cells were examined for saliva flow rates during ESS development. Both human and murine primary SG epithelial cells were treated with IL-17 for measuring cholinergic activation-induced calcium movement. Moreover, SG functions were assessed in ESS mice with salivary retrograde cannulation of IL-17 neutralisation antibodies. RESULTS: Increased salivary IL-17 levels were negatively correlated with saliva flow rates in pSS patients. Both IL-17-deficient mice and chimeric mice with non-hematopoietic cell-restricted IL-17RC deficiency exhibited no obvious salivary reduction while chimeric mice with hematopoietic cell-restricted IL-17RC deficiency showed significantly decreased saliva secretion during ESS development. In SG epithelial cells, IL-17 inhibited acetylcholine-induced calcium movement and downregulated the expression of transient receptor potential canonical 1 via promoting Nfkbiz mRNA stabilisation. Moreover, local IL-17 neutralisation in SG markedly attenuated hyposalivation and ameliorated tissue inflammation in ESS mice. CONCLUSION: These findings identify a novel function of IL-17 in driving salivary dysfunction during pSS development and may provide a new therapeutic strategy for targeting SG dysfunction in pSS patients.

16.
Front Immunol ; 12: 626310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815378

RESUMO

Although B cells have been shown to contribute to the pathogenesis of rheumatoid arthritis (RA), the precise role of B cells in RA needs to be explored further. Our previous studies have revealed that adiponectin (AD) is expressed at high levels in inflamed synovial joint tissues, and its expression is closely correlated with progressive bone erosion in patients with RA. In this study, we investigated the possible role of AD in B cell proliferation and differentiation. We found that AD stimulation could induce B cell proliferation and differentiation in cell culture. Notably, local intraarticular injection of AD promoted B cell expansion in joint tissues and exacerbated arthritis in mice with collagen-induced arthritis (CIA). Mechanistically, AD induced the activation of PI3K/Akt1 and STAT3 and promoted the proliferation and differentiation of B cells. Moreover, STAT3 bound to the promoter of the Blimp-1 gene, upregulated Blimp-1 expression at the transcriptional level, and promoted B cell differentiation. Collectively, we observed that AD exacerbated CIA by enhancing B cell proliferation and differentiation mediated by the PI3K/Akt1/STAT3 axis.


Assuntos
Adiponectina/toxicidade , Artrite Experimental/enzimologia , Linfócitos B/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Experimental/patologia , Linfócitos B/enzimologia , Linfócitos B/imunologia , Colágeno Tipo II , Ativação Enzimática , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fosfatidilinositol 3-Quinase/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais
17.
Cell Mol Immunol ; 18(2): 440-451, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408339

RESUMO

Sjögren's syndrome (SS) is a systemic autoimmune disease characterized by progressive inflammation and tissue damage in salivary glands and lacrimal glands. Our previous studies showed that myeloid-derived suppressor cells (MDSCs) exhibited impaired immunosuppressive function during disease progression in patients with SS and mice with experimental Sjögren's syndrome (ESS), but it remains unclear whether restoring the function of MDSCs can effectively ameliorate the development of ESS. In this study, we found that murine olfactory ecto-mesenchymal stem cell-derived exosomes (OE-MSC-Exos) significantly enhanced the suppressive function of MDSCs by upregulating arginase expression and increasing ROS and NO levels. Moreover, treatment with OE-MSC-Exos via intravenous injection markedly attenuated disease progression and restored MDSC function in ESS mice. Mechanistically, OE-MSC-Exo-secreted IL-6 activated the Jak2/Stat3 pathway in MDSCs. In addition, the abundant S100A4 in OE-MSC-Exos acted as a key factor in mediating the endogenous production of IL-6 by MDSCs via TLR4 signaling, indicating an autocrine pathway of MDSC functional modulation by IL-6. Taken together, our results demonstrated that OE-MSC-Exos possess therapeutic potential to attenuate ESS progression by enhancing the immunosuppressive function of MDSCs, possibly constituting a new strategy for the treatment of Sjögren's syndrome and other autoimmune diseases.


Assuntos
Exossomos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células Supressoras Mieloides/imunologia , Córtex Olfatório/citologia , Síndrome de Sjogren/terapia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia
18.
Front Immunol ; 12: 777522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069549

RESUMO

Background: Si-Miao-San (SMS) is a well-known traditional Chinese medicine. This study aims to evaluate the anti-inflammatory effects of SMS on gouty arthritis and its potential mechanism of action. Methods: The effects and mechanism of SMS were evaluated in monosodium urate (MSU)-treated mice or macrophages. The expression of cytokines and PI3K/Akt was analyzed using real-time PCR and Western blotting analyses. Macrophage polarization was assessed with immunofluorescence assays, real-time PCR, and Western blotting. Mass spectrometry was used to screen the active ingredients of SMS. Results: Pretreatment with SMS ameliorated MSU-induced acute gouty arthritis in mice with increased PI3K/Akt activation and M2 macrophage polarization in the joint tissues. In vitro, SMS treatment significantly inhibited MSU-triggered inflammatory response, increased p-Akt and Arg-1 expression in macrophages, and promoted M2 macrophage polarization. These effects of SMS were inhibited when PI3K/Akt activation was blocked by LY294002 in the macrophages. Moreover, SMS significantly reduced serum uric acid levels in the hyperuricemia mice. Using mass spectrometry, the plant hormones ecdysone and estrone were detected as the potentially effective ingredients of SMS. Conclusion: SMS ameliorated MSU-induced gouty arthritis and inhibited hyperuricemia. The anti-inflammatory mechanism of SMS may exert anti-inflammatory effects by promoting M2 polarization via PI3K/Akt signaling. Ecdysone and estrone might be the potentially effective ingredients of SMS. This research may provide evidence for the application of SMS in the treatment of gout.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Gota , Macrófagos , Ácido Úrico , Animais , Cromonas/farmacologia , Gota/tratamento farmacológico , Gota/imunologia , Gota/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células THP-1 , Ácido Úrico/imunologia , Ácido Úrico/metabolismo
19.
Front Immunol ; 12: 816839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095918

RESUMO

Inflammasome is a cytoplasmic multiprotein complex that facilitates the clearance of exogenous microorganisms or the recognition of endogenous danger signals, which is critically involved in innate inflammatory response. Excessive or abnormal activation of inflammasomes has been shown to contribute to the development of various diseases including autoimmune diseases, neurodegenerative changes, and cancers. Rheumatoid arthritis (RA) is a chronic and complex autoimmune disease, in which inflammasome activation plays a pivotal role in immune dysregulation and joint inflammation. This review summarizes recent findings on inflammasome activation and its effector mechanisms in the pathogenesis of RA and potential development of therapeutic targeting of inflammasome for the immunotherapy of RA.


Assuntos
Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Biomarcadores , Suscetibilidade a Doenças , Inflamassomos/metabolismo , Animais , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/tratamento farmacológico , Autoimunidade , Gerenciamento Clínico , Predisposição Genética para Doença , Humanos , Inflamassomos/imunologia , Terapia de Alvo Molecular , Polimorfismo de Nucleotídeo Único
20.
Cell ; 183(7): 1867-1883.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33248023

RESUMO

Biliary atresia (BA) is a severe cholangiopathy that leads to liver failure in infants, but its pathogenesis remains to be fully characterized. By single-cell RNA profiling, we observed macrophage hypo-inflammation, Kupffer cell scavenger function defects, cytotoxic T cell expansion, and deficiency of CX3CR1+effector T and natural killer (NK) cells in infants with BA. More importantly, we discovered that hepatic B cell lymphopoiesis did not cease after birth and that tolerance defects contributed to immunoglobulin G (IgG)-autoantibody accumulation in BA. In a rhesus-rotavirus induced BA model, depleting B cells or blocking antigen presentation ameliorated liver damage. In a pilot clinical study, we demonstrated that rituximab was effective in depleting hepatic B cells and restoring the functions of macrophages, Kupffer cells, and T cells to levels comparable to those of control subjects. In summary, our comprehensive immune profiling in infants with BA had educed that B-cell-modifying therapies may alleviate liver pathology.


Assuntos
Atresia Biliar/imunologia , Atresia Biliar/terapia , Fígado/imunologia , Animais , Antígenos CD20/metabolismo , Linfócitos B/imunologia , Atresia Biliar/sangue , Atresia Biliar/tratamento farmacológico , Biópsia , Receptor 1 de Quimiocina CX3C/metabolismo , Morte Celular , Linhagem Celular , Proliferação de Células , Transdiferenciação Celular , Criança , Pré-Escolar , Estudos de Coortes , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/metabolismo , Lactente , Inflamação/patologia , Células Matadoras Naturais/imunologia , Células de Kupffer/patologia , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Depleção Linfocítica , Linfopoese , Masculino , Camundongos Endogâmicos BALB C , Fagocitose , RNA/metabolismo , Rituximab/administração & dosagem , Rituximab/farmacologia , Rituximab/uso terapêutico , Rotavirus/fisiologia , Análise de Célula Única , Células Th1/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA