Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflamm Res ; 72(8): 1567-1581, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438583

RESUMO

BACKGROUND: Intercellular communication between macrophages and peritoneal mesothelial cells (PMCs) has been suggested as a key factor regulating peritonitis development. Here, we explored whether PPARγ (peroxisome proliferator-activated receptor gamma) can be packaged into macrophage exosomes to mediate intercellular communication and regulate peritonitis. METHODS: Macrophage exosomes were isolated by ultracentrifugation and identified by nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of macrophage-derived exosomes was performed using mass spectrometry. Co-culture models of supernatants or exosomes with PMCs, as well as a mouse peritonitis model induced by lipopolysaccharide (LPS), were employed. RESULTS:  In this study, using stable Raw264.7 cells overexpressing GFP-FLAG-PPARγ (OE-PPARγ), we found that PPARγ inhibited LPS-induced inflammatory responses in Raw264.7 cells and that PPARγ was incorporated into macrophage exosomes during this process. Overexpression of PPARγ mainly regulated the secretion of differentially expressed exosomal proteins involved in the biological processes of protein transport, lipid metabolic process, cell cycle, apoptotic process, DNA damage stimulus, as well as the KEGG pathway of salmonella infection. Using co-culture models and mouse peritonitis model, we showed that exosomes from Raw264.7 cells overexpressing PPARγ inhibited LPS-induced inflammation in co-cultured human PMCs and in mice through downregulating CD14 and TLR4, two key regulators of the salmonella infection pathway. Pretreatment of the PPARγ inhibitor GW9662 abolished the anti-inflammatory effect of exosomes from Raw264.7 OE-PPARγ cells on human PMCs. CONCLUSIONS: These results suggested that overexpression of PPARγ largely altered the proteomic profile of macrophage exosomes and that exosomal PPARγ from macrophages acted as a regulator of intercellular communication to suppress LPS-induced inflammatory responses in vitro and in vivo via negatively regulating the CD14/TLR4 axis.


Assuntos
Fenômenos Biológicos , Peritonite , Camundongos , Humanos , Animais , PPAR gama/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Proteômica , Macrófagos/metabolismo , Peritonite/induzido quimicamente
2.
Nat Commun ; 13(1): 438, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064106

RESUMO

Loss of Klotho, an anti-aging protein, plays a critical role in the pathogenesis of chronic kidney diseases. As Klotho is a large transmembrane protein, it is challenging to harness it as a therapeutic remedy. Here we report the discovery of a Klotho-derived peptide 1 (KP1) protecting kidneys by targeting TGF-ß signaling. By screening a series of peptides derived from human Klotho protein, we identified KP1 that repressed fibroblast activation by binding to TGF-ß receptor 2 (TßR2) and disrupting the TGF-ß/TßR2 engagement. As such, KP1 blocked TGF-ß-induced activation of Smad2/3 and mitogen-activated protein kinases. In mouse models of renal fibrosis, intravenous injection of KP1 resulted in its preferential accumulation in injured kidneys. KP1 preserved kidney function, repressed TGF-ß signaling, ameliorated renal fibrosis and restored endogenous Klotho expression. Together, our findings suggest that KP1 recapitulates the anti-fibrotic action of Klotho and offers a potential remedy in the fight against fibrotic kidney diseases.


Assuntos
Rim/metabolismo , Rim/patologia , Proteínas Klotho/química , Peptídeos/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Humanos , Inflamação/patologia , Rim/lesões , Rim/fisiopatologia , Nefropatias/complicações , Nefropatias/patologia , Masculino , Camundongos Endogâmicos BALB C , Peptídeos/química , Fosforilação/efeitos dos fármacos , Ligação Proteica , Ratos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Proteínas Smad/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia
3.
Kidney Int ; 95(4): 830-845, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30770219

RESUMO

Podocyte injury is the major cause of proteinuria in primary glomerular diseases. Oxidative stress has long been thought to play a role in triggering podocyte damage; however, the underlying mechanism remains poorly understood. Here we show that the Wnt/ß-catenin pathway is involved in mediating oxidative stress-induced podocyte dysfunction. Advanced oxidation protein products, a marker and trigger of oxidative stress, were increased in the serum of patients with chronic kidney disease and correlated with impaired glomerular filtration, proteinuria, and circulating level of Wnt1. Both serum from patients with chronic kidney disease and exogenous advanced oxidation protein products induced Wnt1 and Wnt7a expression, activated ß-catenin, and reduced expression of podocyte-specific markers in vitro and in vivo. Blockade of Wnt signaling by Klotho or knockdown of ß-catenin by shRNA in podocytes abolished ß-catenin activation and the upregulation of fibronectin, desmin, matrix metalloproteinase-9, and Snail1 triggered by advanced oxidation protein products. Furthermore, conditional knockout mice with podocyte-specific ablation of ß-catenin were protected against podocyte injury and albuminuria after treatment with advanced oxidation protein products. The action of Wnt/ß-catenin was dependent on the receptor of advanced glycation end products (RAGE)-mediated NADPH oxidase induction, reactive oxygen species generation, and nuclear factor-κB activation. These studies uncover a novel mechanistic linkage of oxidative stress, Wnt/ß-catenin activation, and podocyte dysfunction.


Assuntos
Produtos da Oxidação Avançada de Proteínas/metabolismo , Podócitos/patologia , Proteinúria/patologia , Insuficiência Renal Crônica/patologia , Via de Sinalização Wnt , Adolescente , Adulto , Produtos da Oxidação Avançada de Proteínas/sangue , Idoso , Animais , Feminino , Glucuronidase/metabolismo , Voluntários Saudáveis , Humanos , Proteínas Klotho , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Estresse Oxidativo , Podócitos/metabolismo , Proteinúria/sangue , Proteinúria/urina , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/urina , Regulação para Cima , Proteínas Wnt/metabolismo , Proteína Wnt1/metabolismo , Adulto Jovem , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA