Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731435

RESUMO

Self-assembled peptide-based nanobiomaterials exhibit promising prospects for drug delivery applications owing to their commendable biocompatibility and biodegradability, facile tissue uptake and utilization, and minimal or negligible unexpected toxicity. TFF3 is an active peptide autonomously secreted by gastric mucosal cells, possessing multiple biological functions. It acts on the surface of the gastric mucosa, facilitating the repair process of gastric mucosal damage. However, when used as a drug, TFF3 faces significant challenges, including short retention time in the gastric mucosal cavity and deactivation due to degradation by stomach acid. In response to this challenge, we developed a self-assembled short peptide hydrogel, Rqdl10, designed as a delivery vehicle for TFF3. Our investigation encompasses an assessment of its properties, biocompatibility, controlled release of TFF3, and the mechanism underlying the promotion of gastric mucosal injury repair. Congo red/aniline blue staining revealed that Rqdl10 promptly self-assembled in PBS, forming hydrogels. Circular dichroism spectra indicated the presence of a stable ß-sheet secondary structure in the Rqdl10 hydrogel. Cryo-scanning electron microscopy and atomic force microscopy observations demonstrated that the Rqdl10 formed vesicle-like structures in the PBS, which were interconnected to construct a three-dimensional nanostructure. Moreover, the Rqdl10 hydrogel exhibited outstanding biocompatibility and could sustainably and slowly release TFF3. The utilization of the Rqdl10 hydrogel as a carrier for TFF3 substantially augmented its proliferative and migratory capabilities, while concurrently bolstering its anti-inflammatory and anti-apoptotic attributes following gastric mucosal injury. Our findings underscore the immense potential of the self-assembled peptide hydrogel Rqdl10 for biomedical applications, promising significant contributions to healthcare science.


Assuntos
Mucosa Gástrica , Hidrogéis , Peptídeos , Fator Trefoil-3 , Hidrogéis/química , Fator Trefoil-3/química , Fator Trefoil-3/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/lesões , Peptídeos/química , Peptídeos/farmacologia , Animais , Humanos , Sistemas de Liberação de Medicamentos , Camundongos , Cicatrização/efeitos dos fármacos
2.
J Mol Cell Cardiol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761990

RESUMO

Ferroptosis is an iron-dependent programmed cell death form resulting from lipid peroxidation damage, it plays a key role in organ damage and tumor development from various causes. Sepsis leads to severe host response after infection with high mortality. The long non-coding RNAs (LncRNAs) are involved in different pathophysiological mechanisms of multiple diseases. Here, we used cecal ligation and puncture (CLP) operation to mimic sepsis induced myocardial injury (SIMI) in mouse model, and LncRNAs and mRNAs were profiled by Arraystar mouse LncRNA Array V3.0. Based on the microarray results, 552 LncRNAs and 520 mRNAs were differentially expressed in the sham and CLP groups, among them, LncRNA Lcn2-204 was the highest differentially expressed up-regulated LncRNA. Iron metabolism disorder was involved in SIMI by bioinformatics analysis, meanwhile, myocardial iron content and lipocalin-2 (Lcn2) protein expressions were increased. The CNC network comprised 137 positive interactions and 138 negative interactions. Bioinformatics analysis showed several iron-related terms were enriched and six genes (Scara5, Tfrc, Lcn2, Cp, Clic5, Ank1) were closely associated with iron metabolism. Then, we constructed knockdown LncRNA Lcn2-204 targeting myocardium and found that it ameliorated cardiac injury in mouse sepsis model through modulating iron overload and ferroptosis. In addition, we found that LncRNA Lcn2-204 was involved in the regulation of Lcn2 expression in septic myocardial injury. Based on these findings, we conclude that iron overload and ferroptosis are the key mechanisms leading to myocardial injury in sepsis, knockdown of LncRNA Lcn2-204 plays the cardioprotective effect through inhibition of iron overload, ferroptosis and Lcn2 expression. It may provide a novel therapeutic approach to ameliorate sepsis-induced myocardial injury.

3.
Acta Pharm Sin B ; 14(4): 1677-1692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572095

RESUMO

Chemotherapy-induced mucositis represents a severe adverse outcome of cancer treatment, significantly curtailing the efficacy of these treatments and, in some cases, resulting in fatal consequences. Despite identifying intestinal epithelial cell damage as a key factor in chemotherapy-induced mucositis, the paucity of effective treatments for such damage is evident. In our study, we discovered that Eubacterium coprostanoligenes promotes mucin secretion by goblet cells, thereby fortifying the integrity of the intestinal mucus barrier. This enhanced barrier function serves to resist microbial invasion and subsequently reduces the inflammatory response. Importantly, this effect remains unobtrusive to the anti-tumor efficacy of chemotherapy drugs. Mechanistically, E. copr up-regulates the expression of AUF1, leading to the stabilization of Muc2 mRNA and an increase in mucin synthesis in goblet cells. An especially significant finding is that E. copr activates the AhR pathway, thereby promoting the expression of AUF1. In summary, our results strongly indicate that E. copr enhances the intestinal mucus barrier, effectively alleviating chemotherapy-induced intestinal mucositis by activating the AhR/AUF1 pathway, consequently enhancing Muc2 mRNA stability.

4.
Dalton Trans ; 53(16): 6974-6982, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563069

RESUMO

Tubular structured composites have attracted great interest in catalysis research owing to their void-confinement effects. In this work, we synthesized a pair of hollow N-doped carbon microtubes (NCMTs) with Fe3O4 nanoparticles (NPs) encapsulated inside NCMTs (Fe3O4@NCMTs) and supported outside NCMTs (NCMTs@Fe3O4) while keeping other structural features the same. The impact of structural effects on the catalytic activities was investigated by comparing a pair of hollow-structured nanocomposites. It was found that the Fe3O4@NCMTs possessed a higher peroxidase-like activity when compared with NCMTs@Fe3O4, demonstrating structural superiority of Fe3O4@NCMTs. Based on the excellent peroxidase-like catalytic activity and stability of Fe3O4@NCMTs, an ultra-sensitive colorimetric method was developed for the detection of H2O2 and GSH with detection limits of 0.15 µM and 0.49 µM, respectively, which has potential application value in biological sciences and biotechnology.


Assuntos
Carbono , Peróxido de Hidrogênio , Carbono/química , Peróxido de Hidrogênio/química , Catálise , Nanopartículas de Magnetita/química , Propriedades de Superfície , Glutationa/química , Materiais Biomiméticos/química , Nitrogênio/química , Colorimetria , Biomimética
5.
Front Surg ; 11: 1351291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516393

RESUMO

Neuro-endoscopic hematoma evacuation is a crucial therapeutic approach for intracerebral hemorrhage. Our research team has developed a portable and contact neuro-endoscopy technique to enhance the conventional endoscopy procedure. compared to traditional endoscopy, this innovative approach involves miniaturizing the lens, light source, and camera system. These components are integrated into a stainless steel tube with a diameter of 4 mm, referred to as the portable endoscopy in this study. The portable endoscopy is powered by a USB cable and the video is displayed on a tablet computer. This portable endoscope facilitates easier operation with both hands by a single surgeon.

6.
Int Immunopharmacol ; 131: 111863, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492340

RESUMO

BACKGROUND: Lymphocyte-related factors were associated with survival outcome of different types of cancers. Nevertheless, the association between lymphocytes-related factors and tumor response of immunotherapy remains unclear. METHODS: This is a retrospective study. Eligible participants included patients with unresectable or advanced hepatocellular carcinoma (HCC) who underwent immunotherapy as their first-line treatment. Radiological assessment of tumor response adhered to RECIST 1.1 and HCC-specific modified RECIST (mRECIST) criteria. Univariate and multivariate logistic analyses were employed to analyze clinical factors associated with tumor response. Kaplan-Meier survivial analysis were employed to compare progression-free survival (PFS) and overall survival (OS) across different clinical factors. Furthermore, patients who received treatment with either a combination of bevacizumab and anti-PD-1(L1) antibody (Beva group) or tyrosine-kinase inhibitor (TKI) and anti-PD-1 antibody (TKI group) were examined to explore the relation between clinical factors and tumor response. RESULTS: A total of 208 patients were enrolled in this study. The median PFS and OS were 9.84 months and 24.44 months,respectively. An independent factor associated with a more favorable tumor response to immunotherapy was identified when PLR<100. Patients with PLR<100 had longer PFS than other patients, while OS showed no significant difference. Further analysis revealed that PLR exhibited superior prognostic value in patients of the Beva group as compared to those in the TKI group. CONCLUSIONS: There exisits an association between PLR and tumor response as well as survival outcomes in patients receiving immunotherapy, particularly those treated with the combination of bevacizumab and anti-PD-1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Bevacizumab/uso terapêutico , Estudos Retrospectivos , Neoplasias Hepáticas/terapia , Linfócitos , Prognóstico , Imunoterapia
7.
Biochem Biophys Res Commun ; 704: 149701, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38408415

RESUMO

Human bronchial epithelial cells in the airway system, as the primary barrier between humans and the surrounding environment, assume a crucial function in orchestrating the processes of airway inflammation. Target to develop a new three-dimensional (3D) inflammatory model to airway system, and here we report a strategy by using self-assembling D-form peptide to cover the process. By testing physicochemical properties and biocompatibility of Sciobio-Ⅲ, we confirmed that it can rapidly self-assembles under the trigger of ions to form a 3D nanonetwork-like scaffold, which supports 3D cell culture including the cell strains like BEAS-2B cells. Subsequently, inflammation model was established by lipopolysaccharide (LPS), the expression of some markers of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-8 (IL-8), the levels of relevant inflammatory factors were measured by RT-qPCR and the secretion profile of inflammatory cytokines by ELISA, are obtained the quite difference effects in 2D and 3D microenvironment, which suggested Sciobio-Ⅲ hydrogel is an ideal scaffold that create the microenvironment for 3D cell culture. Here we are success to establish a 3D inflammation model for airway system. This innovative model allows for rapid and accurate evaluation of drug metabolism and toxicological side effects, hope to use in drug screening for airway inflammatory diseases and beyond.


Assuntos
Brônquios , Inflamação , Humanos , Inflamação/metabolismo , Células Cultivadas , Interleucina-1beta/metabolismo , Células Epiteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Front Plant Sci ; 15: 1285879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357266

RESUMO

Tetrastigma hemsleyanum is a valuable herb widely used in Chinese traditional and modern medicine. Winter cold severely limits the artificial cultivation of this plant, but the physiological and molecular mechanisms upon exposure to cold stress in T. hemsleyanum are unclear. T. hemsleyanum plants with different geographical origins exhibit large differences in response to cold stress. In this research study, using T. hemsleyanum ecotypes that exhibit frost tolerance (FR) and frost sensitivity (FS), we analyzed the response of cottage seedlings to a simulated frost treatment; plant hormones were induced with both short (2 h) and long (9 h) frost treatments, which were used to construct the full-length transcriptome and obtained 76,750 transcripts with all transcripts mapped to 28,805 genes, and 27,215 genes, respectively, annotated to databases. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed enrichment in plant hormone signaling pathways. Further analysis shows that differently expressed genes (DEGs) concentrated on calcium signaling, ABA biosynthesis and signal transduction, and ethylene in response to cold stress. We also found that endogenous ABA and ethylene content were increased after cold treatment, and exogenous ABA and ethylene significantly improved cold tolerance in both ecotypes. Our results elucidated the pivotal role of ABA and ethylene in response to cold stress in T. hemsleyanum and identified key genes.

9.
Heliyon ; 10(3): e21909, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314284

RESUMO

Background: Gastric cancer (GC) is the fourth most common cause of cancer-related death and the fifth most frequent malignant cancer, especially advanced GC. Carboxypeptidase X member 1 (CPXM1) is an epigenetic factor involved in many physiological processes, including osteoclast differentiation and adipogenesis. Several studies have shown the association of CPXM1 with multiple tumors; however, the mechanism of CPXM1 involvement in the progression of GC is yet to be characterized. Method: CPXM1 expression data were obtained from the Tumor Immune Estimation Resource. The Cancer Genome Atlas and the Gene Expression Omnibus databases were used to obtain patient-matched clinicopathological information, and the Kaplan-Meier plot database was utilized for the prognosis analysis of GC patients. The Catalog of Somatic Mutations in Cancer and cBioportal databases were adopted to study CPXM1 mutations in tumors. Next, we utilized the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis for mechanism research. Furthermore, we performed tumor microenvironment and immune infiltration analysis based on CPXM1. Finally, we predicted sensitivity to several targeted drugs in GC patients based on CPXM1.CPXM1 is upregulated in GC and is correlated with poor prognosis, gender, and tumor stage in GC patients. Gene enrichment analysis suggested that CPXM1 may regulate the occurrence and progression of GC via the PI3K-AKT and TGF-ß pathway. Moreover, CPXM1 expression results in an increase in the proportion of immune and stromal cells. Additionally, the proportion of plasma cells was inversely related to the expression of CPXM1, whereas macrophage M2 expression was proportionate to CPXM1 expression. Finally, six small-molecule drugs that showed notable variations in IC50 between two groups were screened. Conclusion: These results suggested that CPXM1 regulates the progression of GC and may represent a novel target for the detection and treatment of GC.

10.
Arch Biochem Biophys ; 754: 109923, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408533

RESUMO

BACKGROUND: Sepsis is characterized by severe inflammation and organ dysfunction resulting from a dysregulated organismal response to infection. Although pyroptosis has been presumably shown to be a major cause of multiple organ failure and septic death, whether gasdermin E (GSDME)-mediated pyroptosis occurs in septic liver injury and whether inhibiting apoptosis and GSDME-mediated pyroptosis can attenuate septic liver injury remain unclear. This study investigated the role of apoptosis and GSDME-mediated pyroptosis in septic liver injury. METHODS: Adult male C57BL/6 mice were randomly divided into four groups: sham, cecal ligation puncture (CLP), CLP + Z-DEVD-FMK (a caspase-3 inhibitor, 5 mg/kg), and CLP + Ac-DMLD-CMK (a GSDME inhibitor, 5 mg/kg). Sepsis severity was assessed using the murine sepsis score (MSS). Hepatic tissue damage was observed by the hematoxylin-eosin staining method, the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the levels of malondialdehyde (MDA), the concentrations of interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) were measured according to the related kits, and the changes in the hepatic tissue reactive oxygen species (ROS) levels were detected by immunofluorescence (IF). The protein expression levels of cleaved caspase-3, GSDME-N, IL-1ß, B-cell lymphoma-2 (Bcl-2), cytochrome C (Cyt-c), and acetaldehyde dehydrogenase 2 (ALDH2) were detected using western blotting. GSDME expression was detected by immunohistochemistry. RESULTS: Compared with the Sham group, CLP mice showed high sepsis scores and obvious liver damage. However, in the CLP + Z-DEVD-FMK and CLP + Ac-DMLD-CMK groups, the sepsis scores were reduced and liver injury was alleviated. Compared with the Sham group, the serum ALT and AST activities, MDA and ROS levels, and IL-1ß and TNF-α concentrations were increased in the CLP group, as well as the protein expression of cleaved caspase-3, GSDME-N, IL-1ß, Cyt-c, and GSDME positive cells (P < 0.05). However, the expression levels of Bcl-2 and ALDH2 protein were decreased (P < 0.05). Compared with the CLP group, the CLP + Z-DEVD-FMK and CLP + Ac-DMLD-CMK groups showed low sepsis scores, ALT and AST activities, MDA and ROS levels, decreased IL-1ß and TNF-α concentrations, and decreased expression of cleaved caspase-3, GSDME-N, IL-1ß protein expression, and GSDME positive cells (P < 0.05). The expression levels of Bcl-2 and ALDH2 protein were increased (P < 0.05). CONCLUSION: Apoptosis and GSDME-mediated pyroptosis are involved in the development of sepsis-induced hepatic injury. Inhibition of apoptosis and GSDME-mediated pyroptosis attenuates injury. ALDH2 plays a protective role by inhibiting apoptosis and pyroptosis.


Assuntos
Sepse , Fator de Necrose Tumoral alfa , Camundongos , Animais , Masculino , Piroptose , Caspase 3 , Espécies Reativas de Oxigênio , Aldeído-Desidrogenase Mitocondrial , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Apoptose , Sepse/complicações , Sepse/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2
11.
Biomed Pharmacother ; 173: 116321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394849

RESUMO

BACKGROUND: Cerebral palsy (CP) is a condition resulting from perinatal brain injury and can lead to physical disabilities. Exosomes derived from human amniotic mesenchymal stromal cells (hAMSC-Exos) hold promise as potential therapeutic options. OBJECTIVE: This study aimed to investigate the impact of hAMSC-Exos on neuronal cells and their role in regulating apoptosis both in vitro and in vivo. METHODS: hAMSC-Exos were isolated via ultracentrifugation and characterized via transmission electron microscopy, particle size analysis, and flow cytometry. In vitro, neuronal damage was induced by lipopolysaccharide (LPS). CP rat models were established via left common carotid artery ligation. Apoptosis levels in cells and CP rats were assessed using flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blotting, and TUNEL analysis. RESULTS: The results demonstrated successful isolation of hAMSC-Exos via ultracentrifugation, as the isolated cells were positive for CD9 (79.7%) and CD63 (80.2%). Treatment with hAMSC-Exos significantly mitigated the reduction in cell viability induced by LPS. Flow cytometry revealed that LPS-induced damage promoted apoptosis, but this effect was attenuated by treatment with hAMSC-Exos. Additionally, the expression of caspase-3 and caspase-9 and the Bcl-2/Bax ratio indicated that excessive apoptosis could be attenuated by treatment with hAMSC-Exos. Furthermore, tail vein injection of hAMSC-Exos improved the neurobehavioral function of CP rats. Histological analysis via HE and TUNEL staining showed that apoptosis-related damage was attenuated following hAMSC-Exo treatment. CONCLUSIONS: In conclusion, hAMSC-Exos effectively promote neuronal cell survival by regulating apoptosis, indicating their potential as a promising therapeutic option for CP that merits further investigation.


Assuntos
Paralisia Cerebral , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Exossomos/metabolismo , Paralisia Cerebral/terapia , Paralisia Cerebral/metabolismo , Lipopolissacarídeos/farmacologia , Apoptose , Isquemia/metabolismo , Células-Tronco Mesenquimais/metabolismo
12.
Int Immunopharmacol ; 130: 111680, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38368772

RESUMO

Fulminant hepatitis (FH) is a severe clinical syndrome leading to hepatic failure and even mortality. D-galactosamine (D-GalN) plus lipopolysaccharide (LPS) challenge is commonly used to establish an FH mouse model, but the mechanism underlying D-GalN/LPS-induced liver injury is incompletely understood. Previously, it has been reported that extracellular ATP that can be released under cytotoxic and inflammatory stresses serves as a damage signal to induce potassium ion efflux and trigger the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome activation through binding to P2X7 receptor. In this study, we tried to investigate whether it contributed to the fulminant hepatitis (FH) induced by D-GalN plus LPS. In an in vitro cellular model, D-GalN plus extracellular ATP, instead of D-GalN alone, induced pyroptosis and apoptosis, accompanied by mitochondrial reactive oxygen species (ROS) burst, and the oligomerization of Drp1, Bcl-2, and Bak, as well as the loss of mitochondrial membrane potential in LPS-primed macrophages, well reproducing the events induced by D-GalN and LPS in vivo. Moreover, these events in the cellular model were markedly suppressed by both A-804598 (an ATP receptor P2X7R inhibitor) and glibenclamide (an ATP-sensitive potassium ion channel inhibitor); in the FH mouse model, administration of A-804598 significantly mitigated D-GalN/LPS-induced hepatic injury, mitochondrial damage, and the activation of apoptosis and pyroptosis signaling, corroborating the contribution of extracellular ATP to the cell death. Collectively, our data suggest that extracellular ATP acts as an autologous damage-associated molecular pattern to augment mitochondrial damage, hepatic cell death, and liver injury in D-GalN/LPS-induced FH mouse model.


Assuntos
Guanidinas , Lipopolissacarídeos , Necrose Hepática Massiva , Quinolinas , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Galactosamina/farmacologia , Fígado/metabolismo , Apoptose , Trifosfato de Adenosina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
J Nucl Med ; 65(2): 206-212, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176719

RESUMO

Accurate diagnosis and staging are crucial for selecting treatment for patients with pancreatic ductal adenocarcinoma (PDAC). The desmoplastic responses associated with PDAC are often characterized by hypometabolism. Here, we investigated 18F-fibroblast activation protein inhibitor (FAPI)-04 PET/CT in evaluation of PDAC and compared the findings with those obtained using 18F-FDG. Methods: Sixty-two PDAC patients underwent 18F-FAPI-04 PET/CT and 18F-FDG PET/CT. Identification of primary lesions, lymph node (LN) metastasis, and distant metastasis (DM) by these methods was evaluated, and TNM staging was performed. Correlation between SUVmax of the primary lesion and treatment response was explored in patients who received systemic therapy. Results: 18F-FAPI-04 PET/CT identified all patients with PDAC; 18F-FDG PET/CT missed 1 patient. Tracer uptake was higher in 18F-FAPI-04 PET/CT than in 18F-FDG PET/CT in primary tumors (10.63 vs. 2.87, P < 0.0001), LN metastasis (2.90 vs. 1.43, P < 0.0001), and DM (liver, 6.11 vs. 3.10, P = 0.002; peritoneal, 4.70 vs. 2.08, P = 0.015). The methods showed no significant difference in the T staging category, but the N and M values were significantly higher for 18F-FAPI-04 PET/CT than for 18F-FDG PET/CT (P = 0.002 and 0.008, respectively). Thus, 14 patients were upgraded, and only 1 patient was downgraded, by 18F-FAPI-04 PET/CT compared with 18F-FDG PET/CT. A high SUVmax of the primary tumor did not correlate with treatment response for either 18F-FAPI-04 or 18F-FDG. Conclusion: 18F-FAPI-04 PET/CT performed better than 18F-FDG PET/CT in identification of primary tumors, LN metastasis, and DM and in TNM staging of PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Quinolinas , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Pancreáticas/diagnóstico por imagem , Fluordesoxiglucose F18 , Adenocarcinoma/diagnóstico por imagem , Metástase Linfática/diagnóstico por imagem , Radioisótopos de Gálio
14.
Biomacromolecules ; 25(3): 1408-1428, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38236703

RESUMO

The efficacy of the dendritic cell (DC) has failed to meet expectations thus far, and crucial problems such as the immature state of DCs, low targeting efficiency, insufficient number of dendritic cells, and microenvironment are still the current focus. To address these problems, we developed two self-assembling peptides, RLDI and RQDT, that mimic extracellular matrix (ECM). These peptides can be self-assembled into highly ordered three-dimensional nanofiber scaffold structures, where RLDI can form gelation immediately. In addition, we found that RLDI and RQDT enhance the biological function of DCs, including releasing antigens sustainably, adhering to DCs, promoting the maturation of DCs, and increasing the ability of DC antigen presentation. Moreover, peptide hydrogel-based DC treatment significantly achieved prophylactic and treatment effects on colon cancer. These results have certain implications for the design of new broad-spectrum vaccines in the future.


Assuntos
Células Dendríticas , Hidrogéis , Hidrogéis/farmacologia , Imunidade Celular , Peptídeos/farmacologia , Peptídeos/química , Linfócitos T
15.
Free Radic Biol Med ; 212: 117-132, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151213

RESUMO

Damage-associated molecular patterns (DAMPs) such as extracellular ATP and nigericin (a bacterial toxin) not only act as potassium ion (K+) efflux inducers to activate NLRP3 inflammasome, leading to pyroptosis, but also induce cell death independently of NLRP3 expression. However, the roles of energy metabolism in determining NLRP3-dependent pyroptosis and -independent necrosis upon K+ efflux are incompletely understood. Here we established cellular models by pharmacological blockade of energy metabolism, followed by stimulation with a K+ efflux inducer (ATP or nigericin). Two energy metabolic inhibitors, namely CPI-613 that targets α-ketoglutarate dehydrogenase and pyruvate dehydrogenase (a rate-limiting enzyme) and 2-deoxy-d-glucose (2-DG) that targets hexokinase, are recruited in this study, and Nlrp3 gene knockout macrophages were used. Our data showed that CPI-613 and 2-DG dose-dependently inhibited NLRP3 inflammasome activation, but profoundly increased cell death in the presence of ATP or nigericin. The cell death was K+ efflux-induced but NLRP3-independent, which was associated with abrupt reactive oxygen species (ROS) production, reduction of mitochondrial membrane potential, and oligomerization of mitochondrial proteins, all indicating mitochondrial damage. Notably, the cell death induced by K+ efflux and blockade of energy metabolism was distinct from pyroptosis, apoptosis, necroptosis or ferroptosis. Furthermore, fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, significantly suppressed CPI-613+nigericin-induced mitochondrial damage and cell death. Collectively, our data show that energy deficiency diverts NLRP3 inflammasome activation-dependent pyroptosis to Nlrp3-independent necrosis upon K+ efflux inducers, which can be dampened by high-energy intermediate, highlighting a critical role of energy metabolism in cell survival and death under inflammatory conditions.


Assuntos
Caprilatos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sulfetos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Nigericina/farmacologia , Potássio/metabolismo , Necrose/genética , Metabolismo Energético/genética , Trifosfato de Adenosina/metabolismo , Interleucina-1beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-38082831

RESUMO

Systemic treatment is a main way for pancreas cancer patients that are ineligible for surgery. A subgroup of patients showed good response to systemic treatment and the rest received limited benefits. CT images provide a non-invasive way to assess the treatment response. Alternative non-image methods include radiology analysis, tumor marker analysis and combination analysis. To combine the image and non-image data, we propose the Siamese Delta Network with Multimodality Fusion (SDN-MF) to predict systemic treatment response in an end-to-end way. First, a Siamese Delta Network (SDN) is designed to process pre-treatment and pre-surgery CT images and get the image feature changes to predict response. Then, patients' characteristics from EMR and alternative analysis results forms non-image data, which is incorporated into SDN with a multimodality fusion (MF) module. The proposed SDN-MF is evaluated on a private dataset and achieves average AUC value of 0.883 with five cross-validation. Comparison among image-only, non-image-only, and fusion models verifies the superior of multimodality model in predicting systemic treatment response of pancreas cancer patients.


Assuntos
Neoplasias Pancreáticas , Radiologia , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Administração Cutânea , Biomarcadores Tumorais , Imagem Multimodal
17.
Nutr Res Pract ; 17(6): 1070-1083, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053828

RESUMO

BACKGROUND/OBJECTIVES: Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS: Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS: SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS: SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.

18.
Front Immunol ; 14: 1231543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868992

RESUMO

Purpose: To investigate the impact of N6-methyladenosine- (m6A) and neutrophil extracellular traps- (NETs) related lncRNAs (MNlncRNAs) on the prognosis of hepatocellular carcinoma (HCC). Methods: We collected m6A and NETs-related genes from published studies. We identified the MNlncRNAs by correlation analysis. Cox regression and the least absolute selection operator (LASSO) method were used to select predictive MNlncRNAs. The expressions of predictive MNlncRNAs were detected by cell and tissue experiments. Survival, medication sensitivity, and immunological microenvironment evaluations were used to assess the model's prognostic utility. Finally, we performed cellular experiments to further validate the model's prognostic reliability. Results: We obtained a total of 209 MNlncRNAs. 7 MNlncRNAs comprised the prognostic model, which successfully stratifies HCC patients, with the area under the curve (AUC) ranging from 0.7 to 0.8. In vitro tests confirmed that higher risk patients had worse prognosis. Risk score, immunological microenvironment, and immune checkpoint gene expression were all significantly correlated with each other in HCC. In the group at high risk, immunotherapy could be more successful. Cellular assays confirmed that HCC cells with high risk scores have a higher proliferation and invasive capacity. Conclusion: The MNlncRNAs-related prognostic model aided in determining HCC prognosis, revealing novel therapeutic options, notably immunotherapy.


Assuntos
Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Carcinoma Hepatocelular/genética , Armadilhas Extracelulares/genética , Reprodutibilidade dos Testes , Neoplasias Hepáticas/genética , Prognóstico , Microambiente Tumoral/genética
19.
Chem Biol Interact ; 386: 110777, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37879593

RESUMO

Cardiovascular diseases pose a huge threat to global human health and are also a major obstacle to drug development and disease treatment. Drug-induced cardiotoxicity remains an important clinical issue. Both traditional two-dimensional (2D) monolayer cell models and animal models have their own limitations and are not fully suitable for the study of human heart physiology or pathology. Cardiac organoids are three-dimensional (3D) and self-organized structures that accurately retain the biological characteristics and functions of heart tissue. In this study, we successfully established a human cardiac organoid model by inducing the directed differentiation of human embryonic stem cells, which recapitulates the patterns of early myocardial development. Moreover, this model accurately characterized the cardiotoxic damage caused by the anticancer drug doxorubicin, including clinical cardiac injury and cardiac function indicators, cell apoptosis, inflammation, fibrosis, as well as mitochondrial damage. In general, the cardiac organoid model can be used to evaluate the cardiotoxicity of drugs, opening new directions and ideas for drug screening and cardiotoxicity research.


Assuntos
Cardiotoxicidade , Coração , Animais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/toxicidade , Apoptose , Organoides , Miócitos Cardíacos
20.
ACR Open Rheumatol ; 5(12): 685-693, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37818772

RESUMO

OBJECTIVE: We estimated the association between immunosuppressive and immunomodulatory agent (IIA) exposure and severe COVID-19 outcomes in a population-based cohort study. METHODS: Participants were 18 years or older, tested positive for SARS-CoV-2 between February 6, 2020, and August 15, 2021, and were from administrative health data for the entire province of British Columbia, Canada. IIA use within 3 months prior to positive SARS-CoV-2 test included conventional disease-modifying antirheumatic drugs (antimalarials, methotrexate, leflunomide, sulfasalazine, individually), immunosuppressants (azathioprine, mycophenolate mofetil/mycophenolate sodium [MMF], cyclophosphamide, cyclosporine, individually and collectively), tumor necrosis factor inhibitor (TNFi) biologics (adalimumab, certolizumab, etanercept, golimumab, infliximab, collectively), non-TNFi biologics or targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs) (rituximab separately from abatacept, anakinra, secukinumab, tocilizumab, tofacitinib and ustekinumab collectively), and glucocorticoids. Severe COVID-19 outcomes were hospitalizations for COVID-19, ICU admissions, and deaths within 60 days of a positive test. Exposure score-overlap weighting was used to balance baseline characteristics of participants with IIA use compared with nonuse of that IIA. Logistic regression measured the association between IIA use and severe COVID-19 outcomes. RESULTS: From 147,301 participants, we identified 515 antimalarial, 573 methotrexate, 72 leflunomide, 180 sulfasalazine, 468 immunosuppressant, 378 TNFi biologic, 49 rituximab, 144 other non-TNFi biologic or tsDMARD, and 1348 glucocorticoid prescriptions. Risk of hospitalizations for COVID-19 was significantly greater for MMF (odds ratio [95% CI]): 2.82 [1.81-4.40], all immunosuppressants: 2.08 [1.51-2.87], and glucocorticoids: 1.63 [1.36-1.96], relative to nonuse. Similar outcomes were seen for ICU admission and MMF: 2.52 [1.34-4.74], immunosuppressants: 2.88 [1.73-4.78], and glucocorticoids: 1.86 [1.37-2.54]. Only glucocorticoids use was associated with a significant increase in 60-day mortality: 1.58 [1.21-2.06]. No other IIAs displayed statistically significant associations with severe COVID-19 outcomes. CONCLUSION: Current use of MMF and glucocorticoids were associated with an increased risk of severe COVID-19 outcomes compared with nonuse. These results emphasize the variety of circumstances of patients taking IIAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA