Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Chin Med ; 52(4): 1173-1193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938156

RESUMO

Heat shock proteins (HSPs), which function as chaperones, are activated in response to various environmental stressors. In addition to their role in diverse aspects of protein production, HSPs protect against harmful protein-related stressors. Calycosin exhibits numerous beneficial properties. This study aims to explore the protective effects of calycosin in the heart under heat shock and determine its underlying mechanism. H9c2 cells, western blot, TUNEL staining, flow cytometry, and immunofluorescence staining were used. The time-dependent effects of heat shock analyzed using western blot revealed increased HSP expression for up to 2[Formula: see text]h, followed by protein degradation after 4[Formula: see text]h. Hence, a heat shock damage duration of 4[Formula: see text]h was chosen for subsequent investigations. Calycosin administered post-heat shock demonstrated dose-dependent recovery of cell viability. Under heat shock conditions, calycosin prevented the apoptosis of H9c2 cells by upregulating HSPs, suppressing p-JNK, enhancing Bcl-2 activation, and inhibiting cleaved caspase 3. Calycosin also inhibited Fas/FasL expression and activated cell survival markers (p-PI3K, p-ERK, p-Akt), indicating their cytoprotective properties through PI3K/Akt activation and JNK inhibition. TUNEL staining and flow cytometry confirmed that calycosin reduced apoptosis. Moreover, calycosin reversed the inhibitory effects of quercetin on HSF1 and Hsp70 expression, illustrating its role in enhancing Hsp70 expression through HSF1 activation during heat shock. Immunofluorescence staining demonstrated HSF1 translocation to the nucleus following calycosin treatment, emphasizing its cytoprotective effects. In conclusion, calycosin exhibits pronounced protective effects against heat shock-induced damages by modulating HSP expression and regulating key signaling pathways to promote cell survival in H9c2 cells.


Assuntos
Apoptose , Sobrevivência Celular , Proteínas de Choque Térmico , Isoflavonas , Apoptose/efeitos dos fármacos , Isoflavonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Animais , Ratos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Caspase 3/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Int J Med Sci ; 21(8): 1491-1499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903928

RESUMO

Age-related structural and functional changes in the kidney can eventually lead to development of chronic kidney disease, which is one of the leading causes of mortality among elderly people. For effective management of age-related kidney complications, it is important to identify new therapeutic interventions with minimal side-effects. The present study was designed to evaluate the synergistic effect of a traditional Chinese herb, Alpinate Oxyphyllae Fructus (AOF), and adipose-derived mesenchymal stem cells (ADMSCs) in ameliorating D-galactose (D-gal)-induced renal aging phenotypes in WKY rats. The study findings showed that D-gal-induced alteration in the kidney morphology was partly recovered by the AOF and ADMSC co-treatment. Moreover, the AOF and ADMSC co-treatment reduced the expression of proinflammatory mediators (NFkB, IL-6, and Cox2) and increased the expression of redox regulators (Nrf2 and HO-1) in the kidney, which were otherwise augmented by the D-gal treatment. Regarding kidney cell death, the AOF and ADMSC co-treatment was found to abolish the proapoptotic effects of D-gal by downregulating Bax and Bad expressions and inhibiting caspase 3 activation. Taken together, the study findings indicate that the AOF and ADMSC co-treatment protect the kidney from D-gal-induced aging by reducing cellular inflammation and oxidative stress and inhibiting renal cell death. This study can open up a new path toward developing novel therapeutic interventions using both AOF and ADMSC to effectively manage age-related renal deterioration.


Assuntos
Medicamentos de Ervas Chinesas , Galactose , Rim , Células-Tronco Mesenquimais , Animais , Galactose/efeitos adversos , Ratos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Humanos , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/tratamento farmacológico
3.
Environ Toxicol ; 39(7): 3872-3882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558324

RESUMO

Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 µM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.


Assuntos
Senescência Celular , Doxorrubicina , Mitocôndrias , Extratos Vegetais , Espécies Reativas de Oxigênio , Cordão Umbilical , Humanos , Espécies Reativas de Oxigênio/metabolismo , Senescência Celular/efeitos dos fármacos , Cordão Umbilical/citologia , Cordão Umbilical/efeitos dos fármacos , Extratos Vegetais/farmacologia , Doxorrubicina/toxicidade , Doxorrubicina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Platycodon/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células Cultivadas
4.
J Nutr Biochem ; 125: 109567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185348

RESUMO

Diabetic cardiomyopathy is a common complication of diabetes, resulting in cardiac hypertrophy and heart failure associated with excessive reactive oxygen species and mitochondria-mediated apoptosis generation. Mitogen-activated protein kinase-c-Jun N-terminal kinase (MAPK-JNK), regulated by microRNA (miR)-210, affects mitochondrial function and is activated by advanced glycation end-products (AGE) in cardiac cells. Diallyl trisulfide (DATS), an antioxidant in garlic oil, inhibits stress-induced cardiac apoptosis. This study examined whether DATS enhances miR-210 expression to attenuate cardiac apoptosis. We investigated the DATS-mediated attenuation mechanism of AGE-enhanced cardiac apoptosis by modulating miR-210 and its upstream transcriptional regulator, FoxO3a. We found FoxO3a binding sites in the miR-210 promoter region. Our results indicated that DATS treatment inhibited AGE-induced JNK activation, phosphoprotein c-Jun nuclear transactivation, and cardiac apoptosis and reversed the AGE-induced reduction in cardiac miR-210 levels. The luciferase activity after DATS treatment was significantly lower than that of the control and was reversed following AGE treatment. We also showed that FoxO3a, upregulated by DATS treatment, may bind to the miR-210 promoter to enhance its expression and downregulates JNK expression to attenuate AGE-induced cardiac apoptosis. Oral administration of DATS enhanced FoxO3a expression in the heart and reduced diabetes-induced heart apoptosis. Our findings indicate that DATS mediates AGE-induced cardiac cell apoptosis attenuation by promoting FoxO3a nuclear transactivation to enhance miR-210 expression and regulate JNK activation. Our results suggest that DATS can be used as a cardioprotective agent, and miR-210 is a critical regulator in inhibiting diabetic cardiomyopathy.


Assuntos
Compostos Alílicos , Cardiomiopatias Diabéticas , MicroRNAs , Humanos , Regulação para Cima , Cardiomiopatias Diabéticas/prevenção & controle , Produtos Finais de Glicação Avançada , Reação de Maillard , Sulfetos/farmacologia , Apoptose , Linhagem Celular Tumoral , Quinases de Proteína Quinase Ativadas por Mitógeno , MicroRNAs/genética
5.
Environ Toxicol ; 38(10): 2450-2461, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37461261

RESUMO

Mitochondrial dysfunction has been linked to many diseases, including organ degeneration and cancer. Wharton's jelly-derived mesenchymal stem cells provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. This study focused on screening the senomorphic properties of Ohwia caudata aqueous extract as an emerging strategy for preventing or treating mitochondrial dysfunction in stem cells. Wharton's jelly-derived mesenchymal stem cells were incubated with 0.1 µM doxorubicin, for 24 h to induce mitochondrial dysfunction. Next, the cells were treated with a series concentration of Ohwia caudata aqueous extract (25, 50, 100, and 200 µg/mL) for another 24 h. In addition, an untreated control group and a doxorubicin-induced mitochondrial dysfunction positive control group were maintained under the same conditions. Our data showed that Ohwia caudata aqueous extract markedly suppressed doxorubicin-induced mitochondrial dysfunction by increasing Tid1 and Tom20 expression, decreased reactive oxygen species production, and maintained mitochondrial membrane potential to promote mitochondrial stability. Ohwia caudata aqueous extract retained the stemness of Wharton's jelly-derived mesenchymal stem cells and reduced the apoptotic rate. These results indicate that Ohwia caudata aqueous extract protects Wharton's jelly-derived mesenchymal stem cells against doxorubicin-induced mitochondrial dysfunction and can potentially prevent mitochondrial dysfunction in other cells. This study provides new directions for the medical application of Ohwia caudata.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Geleia de Wharton/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doxorrubicina/toxicidade , Células Cultivadas , Mitocôndrias/metabolismo , Urodelos , Diferenciação Celular
6.
Environ Toxicol ; 38(3): 676-684, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36462176

RESUMO

Diabetes-induced cardiovascular complications are mainly associated with high morbidity and mortality in patients with diabetes. Insulin-like growth factor II receptor α (IGF-IIRα) is a cardiac risk factor. In this study, we hypothesized IGF-IIRα could also deteriorate diabetic heart injury. The results presented that both in vivo transgenic Sprague-Dawley rat model with specific IGF-IIRα overexpression in the heart and in vitro myocardium H9c2 cells were used to investigate the negative function of IGF-IIRα in diabetic hearts. The results showed that IGF-IIRα overexpression aided hyperglycemia in creating more myocardial injury. Pro-inflammatory factors, such as Tumor necrosis factor-alpha, Interleukin-6, Cyclooxygenase-2, Inducible nitric oxide synthase, and Nuclear factor-kappaB inflammatory cascade, are enhanced in the diabetic myocardium with cardiac-specific IGF-IIRα overexpression. Correspondingly, IGF-IIRα overexpression in the diabetic myocardium also reduced the PI3K-AKT survival axis and activated mitochondrial-dependent apoptosis. Finally, both ejection fraction and fractional shortening were be significantly decrease in diabetic rats with cardiac-specific IGF-IIRα overexpression. Overall, all results provid clear evidence that IGF-IIRα can enhance cardiac damage and is a harmful factor to the heart under high-blood glucose conditions. However, the pathophysiology of IGF-IIRα under different stresses and its downstream regulation in the heart still require further research.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Infarto do Miocárdio , Ratos , Animais , Fator de Crescimento Insulin-Like II , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Apoptose , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo
7.
J Hypertens ; 40(12): 2502-2512, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093879

RESUMO

BACKGROUND: Hypertension is a severe public health risk factor worldwide. Elevated angiotensin II (Ang II) produced by the renin-angiotensin-aldosterone system can lead to hypertension and its complications. METHOD: In this study, we addressed the cardiac-injury effects of Ang II and investigated the signaling mechanism induced by Ang II. Both H9c2 cardiomyoblast cells and neonatal rat cardiomyocytes were exposed to Ang II to observe hypertension-related cardiac apoptosis. RESULTS: The results of western blotting revealed that Ang II significantly attenuated the IGF1R-PI3K-AKT pathway via the Ang II-AT1 receptor axis and phosphatase and tensin homolog expression. Furthermore, real-time PCR showed that Ang II also activated miR-320-3p transcription to repress the PI3K-Akt pathway. In the heart tissue of spontaneously hypertensive rats, activation of the IGF1R survival pathway was also reduced compared with that in Wistar-Kyoto rats, especially in aged spontaneously hypertensive rats. CONCLUSION: Hence, we speculate that the Ang II-AT1 receptor axis induces both phosphatase and tensin homolog and miR-320-3p expression to downregulate the IGF1R-PI3K-AKT survival pathway and cause cell apoptosis in the heart.


Assuntos
Hipertensão , MicroRNAs , Ratos , Animais , Angiotensina II/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Tensinas/metabolismo , Ratos Endogâmicos SHR , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Ratos Endogâmicos WKY , Apoptose , Miócitos Cardíacos/metabolismo , Hipertensão/metabolismo , MicroRNAs/metabolismo
8.
Front Cardiovasc Med ; 9: 961920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017096

RESUMO

Background: Acute ST-elevation myocardial infarction (STEMI) elicits a robust cardiomyocyte death and inflammatory responses despite timely revascularization. Objectives: This phase 1, open-label, single-arm, first-in-human study aimed to assess the safety and efficacy of combined intracoronary (IC) and intravenous (IV) transplantation of umbilical cord-derived mesenchymal stem cells (UMSC01) for heart repair in STEMI patients with impaired left ventricular ejection fraction (LVEF 30-49%) following successful reperfusion by percutaneous coronary intervention. Methods: Consenting patients received the first dose of UMSC01 through IC injection 4-5 days after STEMI followed by the second dose of UMSC01 via IV infusion 2 days later. The primary endpoint was occurrence of any treatment-related adverse events and the secondary endpoint was changes of serum biomarkers and heart function by cardiac magnetic resonance imaging during a 12-month follow-up period. Results: Eight patients gave informed consents, of whom six completed the study. None of the subjects experienced treatment-related serious adverse events or major adverse cardiovascular events during IC or IV infusion of UMSC01 and during the follow-up period. The NT-proBNP level decreased (1362 ± 1801 vs. 109 ± 115 pg/mL, p = 0.0313), the LVEF increased (52.67 ± 12.75% vs. 62.47 ± 17.35%, p = 0.0246), and the wall motion score decreased (26.33 ± 5.57 vs. 22.33 ± 5.85, p = 0.0180) at the 12-month follow-up compared to the baseline values. The serial changes of LVEF were 0.67 ± 3.98, 8.09 ± 6.18, 9.04 ± 10.91, and 9.80 ± 7.56 at 1, 3, 6, and 12 months, respectively as compared to the baseline. Conclusion: This pilot study shows that combined IC and IV transplantation of UMSC01 in STEMI patients with impaired LVEF appears to be safe, feasible, and potentially beneficial in improving heart function. Further phase 2 studies are required to explore the effectiveness of dual-route transplantation of UMSC01 in STEMI patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA