Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Medicine (Baltimore) ; 103(20): e38189, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758839

RESUMO

To investigate the mechanism by which high-dose vitamin C (HVC) promotes ferroptosis in tumor cells via network pharmacology, vitamin C-related and ferroptosis-related targets were obtained from the PharmMapper and GeneCards databases, respectively, and their common targets were compared using the Venn diagram. Common targets were imported into the STRING database for protein-protein interaction analysis, and core targets were defined. Core targets were enriched for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways using the R language packages. A map of the core target-based interaction network and a map of the mechanism by which HVC regulates ferroptosis were constructed. A total of 238 vitamin C-related and 721 ferroptosis-related targets were identified, of which 21 targets were common to both. Furthermore, ALDOA, AHCY, LDHB, HSPA8, LGALS3, and GSTP1 were identified as core targets. GO enrichment analysis suggested that the main biological processes included the extrinsic apoptotic signaling pathway and pyruvate metabolic process. KEGG enrichment analysis suggested that HVC regulates ferroptosis mainly through the amino acid and carbohydrate metabolic pathways. The targets were validated by molecular docking. In conclusion, HVC may promote ferroptosis in tumor cells by regulating metabolic pathways, and there is a synergistic effect between HVC and type I ferroptosis inducers. Glycolysis-dependent tumors may be beneficial for HVC therapy. Our study provides a reference for further clinical studies on HVC antitumor therapy.


Assuntos
Ácido Ascórbico , Ferroptose , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ferroptose/efeitos dos fármacos , Humanos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/administração & dosagem , Farmacologia em Rede/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos
2.
Drug Discov Today ; 29(5): 103975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580164

RESUMO

Discoidin domain receptor (DDR)-1 has a crucial role in regulating vital processes, including cell differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. Overexpression or activation of DDR1 in various pathological scenarios makes it a potential therapeutic target for the treatment of cancer, fibrosis, atherosclerosis, and neuropsychiatric, psychiatric, and neurodegenerative disorders. In this review, we summarize current therapeutic approaches targeting DDR1 from a medicinal chemistry perspective. Furthermore, we analyze factors other than issues of low selectivity and risk of resistance, contributing to the infrequent success of DDR1 inhibitors. The complex interplay between DDR1 and the extracellular matrix (ECM) necessitates additional validation, given that DDR1 might exhibit complex and synergistic interactions with other signaling molecules during ECM regulation. The mechanisms involved in DDR1 regulation in cancer and inflammation-related diseases also remain unknown.


Assuntos
Receptor com Domínio Discoidina 1 , Terapia de Alvo Molecular , Neoplasias , Humanos , Receptor com Domínio Discoidina 1/metabolismo , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Animais , Neoplasias/tratamento farmacológico , Matriz Extracelular/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
IEEE Trans Image Process ; 33: 2770-2782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551828

RESUMO

Anomaly detection is an important task for medical image analysis, which can alleviate the reliance of supervised methods on large labelled datasets. Most existing methods use a pixel-wise self-reconstruction framework for anomaly detection. However, there are two challenges of these studies: 1) they tend to overfit learning an identity mapping between the input and output, which leads to failure in detecting abnormal samples; 2) the reconstruction considers the pixel-wise differences which may lead to an undesirable result. To mitigate the above problems, we propose a novel heterogeneous Auto-Encoder (Hetero-AE) for medical anomaly detection. Our model utilizes a convolutional neural network (CNN) as the encoder and a hybrid CNN-Transformer network as the decoder. The heterogeneous structure enables the model to learn the intrinsic information of normal data and enlarge the difference on abnormal samples. To fully exploit the effectiveness of Transformer in the hybrid network, a multi-scale sparse Transformer block is proposed to trade off modelling long-range feature dependencies and high computational costs. Moreover, the multi-stage feature comparison is introduced to reduce the noise of pixel-wise comparison. Extensive experiments on four public datasets (i.e., retinal OCT, chest X-ray, brain MRI, and COVID-19) verify the effectiveness of our method on different imaging modalities for anomaly detection. Additionally, our method can accurately detect tumors in brain MRI and lesions in retinal OCT with interpretable heatmaps to locate lesion areas, assisting clinicians in diagnosing abnormalities efficiently.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Aprendizagem , Redes Neurais de Computação , Retina , Processamento de Imagem Assistida por Computador
4.
Heliyon ; 10(5): e27466, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463824

RESUMO

Objective: Chondrocyte death is the hallmark of cartilage degeneration during osteoarthritis (OA). However, the specific pathogenesis of cell death in OA chondrocytes has not been elucidated. This study aims to validate the role of CDKN1A, a key programmed cell death (PCD)-related gene, in chondrogenic differentiation using a combination of single-cell and bulk sequencing approaches. Design: OA-related RNA-seq data (GSE114007, GSE55235, GSE152805) were downloaded from Gene Expression Omnibus database. PCD-related genes were obtained from GeneCards database. RNA-seq was performed to annotate the cell types in OA and control samples. Differentially expressed genes (DEGs) among those cell types (scRNA-DEGs) were screened. A nomogram of OA was constructed based on the featured genes, and potential drugs targeting the featured genes were predicted. The presence of key genes was confirmed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Western blot (WB), and immunohistochemistry (IHC). Micromass culture and Alcian blue staining were used to determine the effect of CDKN1A on chondrogenesis. Results: Six cell types, namely HomC, HTC, RepC, preFC, FC, and RegC, were annotated in scRNA-seq data. Five featured genes (JUN, CDKN1A, HMGB2, DDIT3, and DDIT4) were screened by multiple biological information analysis methods. TAXOTERE had the highest ability to dock with DDIT3. Functional analysis indicated that CDKN1A was enriched in processes related to collagen catabolism and acts as a positive regulator of autophagy. Additionally, CDKN1A was found to be associated with several KEGG pathways, including those involved in acute myeloid leukemia and autoimmune thyroid disease. CDKN1A was confirmed down-regulated in the joint tissues of OA mouse model and OA model cell. Inhibiting the expression of CDKN1A can significantly suppress the differentiation of OA chondrocytes. Conclusion: Our findings highlight the critical role of CDKN1A in promoting cartilage formation in both in vivo and in vitro and suggest its potential as a therapeutic target for OA treatment.

5.
Eur J Med Chem ; 268: 116237, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387337

RESUMO

Acute myeloid leukemia (AML) patients harboring Fms-like tyrosine kinase 3 (FLT3) mutations often suffer from poor prognosis and relapse. Targeted protein degradation utilizing proteolysis targeting chimeras (PROTACs) is considered as a novel therapeutic strategy in drug discovery and may be a promising modality to target FLT3 mutations for the development of potent anti-AML drugs. Herein, a kind of FLT3-targeting PROTACs was rationally developed based on a FLT3 inhibitor previously reported by us. The representative compound 35 showed potent and selective antiproliferative activities against AML cells harboring FLT3 mutations. Western blot assay demonstrated that compound 35 effectively induced the degradation of FLT3-ITD and decreased the phosphorylation levels of FLT3-ITD, AKT, STAT5 and ERK in MV4-11 cells in a dose-dependent manner. Flow cytometry analysis illustrated that compound 35 strongly induced apoptosis and cell cycle arrest in MV4-11 cells in a dose-dependent manner. Moreover, compound 35 displayed favorable metabolic stability in in-vitro liver microsomes studies. Comparative molecular dynamic (MD) simulation studies further elucidated the underlying mechanism of compound 35 to stabilize the dynamic ensemble of the FLT3-compound 35-cereblon (CRBN) ternary complex. Taken together, compound 35 could serve as a lead molecule for developing FLT3 degraders against AML.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteólise , Leucemia Mieloide Aguda/metabolismo , Apoptose , Mutação , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Artigo em Inglês | MEDLINE | ID: mdl-38192193

RESUMO

OBJECTIVE: To integrate the qualitative research on the self-management experience of breast cancer patients and conduct a systematic review of their self-management experience. METHODS: Using a computer to search a series of databases such as CNKI, Wanfang, VIP, and China Biomedical Database, systematically collect and integrate qualitative research on the self-management experience of breast cancer patients, and the search time is limited to January 2010 to December 2022. The qualitative research quality evaluation standard of the Joanna Briggs Institute Centre for Evidence-Based Health Care in Australia was used as the evaluation standard of this project to complete the accurate evaluation of the literature; Meta-analysis was used to complete the effective integration of the results. RESULTS: 17 pieces of literature were included in this project, and 37 research results with strong integrity were extracted accordingly. On this basis, 7 different categories were summarised, and three integrated results were obtained: the experience of maintaining self-management, symptom recognition, and self-management. CONCLUSION: In the different stages of self-management of breast cancer patients, medical staff should give targeted guidance to help patients obtain a good prognosis.

7.
Sci Rep ; 14(1): 329, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172565

RESUMO

The expression level of SLC35A3 is associated with the prognosis of many cancers, but its role in colorectal cancer (CRC) is unclear. The purpose of our study was to elucidate the role of SLC35A3 in CRC. The expression levels of SLC35A3 in CRC were evaluated through tumor immune resource assessment (TIMER), The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), Human Protein Atlas (HPA), qRT-PCR, and immunohistochemical evaluation. TCGA, GEO, and ICGC databases were used to analyze the diagnostic and prognostic value of SLC35A3 in CRC. A overall survival (OS) model was constructed and validated based on the expression level of SLC35A3 and multivariable analysis results. The cBioPortal tool was used to analyze SLC35A3 mutation in CRC. The UALCAN tool was used to analyze the promoter methylation level of SLC35A3 in colorectal cancer. In addition, the role of SLC35A3 in CRC was determined through GO analysis, KEGG analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and immune checkpoint correlation analysis. In vitro experiments validated the function of SLC35A3 in colorectal cancer cells. Compared with adjacent normal tissues and colonic epithelial cells, the expression of SLC35A3 was decreased in CRC tissues and CRC cell lines. Low expression of SLC35A3 was associated with N stage, pathological stage, and lymphatic infiltration, and it was unfavorable for OS, disease-specific survival (DSS), recurrence-free survival (RFS), and post-progression survival (PPS). According to the Receiver Operating Characteristic (ROC) analysis, SLC35A3 is a potential important diagnostic biomarker for CRC patients. The nomograph based on the expression level of SLC35A3 showed a better predictive model for OS than single prognostic factors and TNM staging. SLC35A3 has multiple types of mutations in CRC, and its promoter methylation level is significantly decreased. GO and KEGG analysis indicated that SLC35A3 may be involved in transmembrane transport protein activity, cell communication, and interaction with neurotransmitter receptors. GSEA revealed that SLC35A3 may be involved in energy metabolism, DNA repair, and cancer pathways. In addition, SLC35A3 was closely related to immune cell infiltration and immune checkpoint expression. Immunohistochemistry confirmed the positive correlation between SLC35A3 and helper T cell infiltration. In vitro experiments showed that overexpression of SLC35A3 inhibited the proliferation and invasion capability of colorectal cancer cells and promoted apoptosis. The results of this study indicate that decreased expression of SLC35A3 is closely associated with poor prognosis and immune cell infiltration in colorectal cancer, and it can serve as a promising independent prognostic biomarker and potential therapeutic target.


Assuntos
Apoptose , Neoplasias Colorretais , Humanos , Biomarcadores , Comunicação Celular , Linhagem Celular , Neoplasias Colorretais/genética , Prognóstico
8.
Hum Gene Ther ; 35(1-2): 48-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37646399

RESUMO

Oncolytic viruses are able to lyse tumor cells selectively in the liver without killing normal hepatocytes, in addition to activating the immune response. Oncolytic virus therapy is expected to revolutionize the treatment of liver cancer, including hepatocellular carcinoma (HCC), one of the most frequent and fatal malignancies. In this study, reverse genetics techniques were exploited to load NA fragments of the A/PuertoRico/8/34 virus (PR8) with GV1001 peptides derived from human telomerase reverse transcriptase. An in vitro assessment of the therapeutic effect of the recombinant oncolytic virus was followed by an in vivo study in mice with HCC. The recombinant virus was verified by sequencing of the recombinant viral gene sequence, and viral virulence was detected by hemagglutination assays and based on the 50% tissue culture infectious dose (TCID50). The morphological structure of the virus was observed by electron microscopy, and GV1001 peptide was localized by cellular immunofluorescence. The selective cytotoxicity of the recombinant oncolytic virus in vitro was demonstrated in cultured HCC cells and normal hepatocytes, as only the tumor cells were killed; the normal cells were not significantly altered. Consistent with the in vitro results, the recombinant oncolytic influenza virus significantly inhibited liver tumor growth in mice in vivo, in addition to inducing an antitumor immune response, including an increase in the number of CD4+ and CD8+ T lymphocytes and, in turn, improving survival. Our results suggest that oncolytic influenza virus carrying GV1001 is a promising immunotherapy in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Orthomyxoviridae , Humanos , Camundongos , Animais , Vírus Oncolíticos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia Viral Oncolítica/métodos , Imunidade , Linhagem Celular Tumoral
9.
Adv Mater ; 36(4): e2309711, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983647

RESUMO

As an iron-dependent lipid peroxidation (LPO) mediated cell death pathway, ferroptosis offers promises for anti-tumor treatment. Photodynamic therapy (PDT) is an ideal way to generate reactive oxygen species (ROS) for LPO. However, the conventional PDT normally functions on subcellular organelles, such as endoplasmic reticulum, mitochondria, and lysosome, causing rapid cell death before triggering ferroptosis. Herein, the first lipid droplet (Ld)-targeting type I photosensitizer (PS) with enhanced superoxide anion (O2 -· ) production, termed MNBS, is reported. The newly designed PS selectively localizes at Ld in cells, and causes cellular LPO accumulation by generating sufficient O2 -· upon irradiation, and subsequently induces ferroptosis mediated chronical PDT, achieving high-efficient anti-tumor PDT in hypoxia and normoxia. Theoretical calculations and comprehensive characterizations indicate that the Ld targeting property and enhanced O2 -· generation of MNBS originate from the elevated H-aggregation tendency owing to dispersed molecular electrostatic distribution. Further in vivo studies using MNBS-encapsulated liposomes demonstrate the excellent anti-cancer efficacy as well as anti-metastatic activity. This study offers a paradigm of H-aggregation reinforced type I PS to achieve ferroptosis-mediated PDT.


Assuntos
Benzenossulfonatos , Ferroptose , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes , Peroxidação de Lipídeos , Gotículas Lipídicas , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral
10.
Neural Regen Res ; 19(7): 1446-1453, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051886

RESUMO

ABSTRACT: Neuronal injury, aging, and cerebrovascular and neurodegenerative diseases such as cerebral infarction, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Huntington's disease are characterized by significant neuronal loss. Unfortunately, the neurons of most mammals including humans do not possess the ability to self-regenerate. Replenishment of lost neurons becomes an appealing therapeutic strategy to reverse the disease phenotype. Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain, but it carries the risk of causing gene mutation, tumorigenesis, severe inflammation, and obstructive hydrocephalus induced by brain edema. Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss, which may overcome the above-mentioned disadvantages of neural stem cell therapy. Thus far, many strategies to transform astrocytes, fibroblasts, microglia, Müller glia, NG2 cells, and other glial cells to mature and functional neurons, or for the conversion between neuronal subtypes have been developed through the regulation of transcription factors, polypyrimidine tract binding protein 1 (PTBP1), and small chemical molecules or are based on a combination of several factors and the location in the central nervous system. However, some recent papers did not obtain expected results, and discrepancies exist. Therefore, in this review, we discuss the history of neuronal transdifferentiation, summarize the strategies for neuronal replenishment and conversion from glia, especially astrocytes, and point out that biosafety, new strategies, and the accurate origin of the truly converted neurons in vivo should be focused upon in future studies. It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transcription factors or down-regulation of PTBP1 or drug interference therapies.

11.
Nat Commun ; 14(1): 7661, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996458

RESUMO

Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.


Assuntos
Neoplasias Colorretais , Macrófagos , Humanos , Macrófagos/metabolismo , Imunoterapia , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo
12.
Front Immunol ; 14: 1235575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799727

RESUMO

Objective: Bazhen Decoction (BZD) is a common adjuvant therapy drug for colorectal cancer (CRC), although its anti-tumor mechanism is unknown. This study aims to explore the core components, key targets, and potential mechanisms of BZD treatment for CRC. Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to acquire the BZD's active ingredient and targets. Meanwhile, the Drugbank, Therapeutic Target Database (TTD), DisGeNET, and GeneCards databases were used to retrieve pertinent targets for CRC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an "herb-ingredient-target" network and identify core targets. GO and KEGG pathway enrichment analyses were conducted using R language software. Molecular docking of key ingredients and core targets of drugs was accomplished using PyMol and Autodock Vina software. Cell and animal research confirmed Bazhen Decoction efficacy and mechanism in treating colorectal cancer. Results: BZD comprises 173 effective active ingredients. Using four databases, 761 targets related to CRC were identified. The intersection of BZD and CRC yielded 98 targets, which were utilized to construct the "herb-ingredient-target" network. The four key effector components with the most targets were quercetin, kaempferol, licochalcone A, and naringenin. Protein-protein interaction (PPI) analysis revealed that the core targets of BZD in treating CRC were AKT1, MYC, CASP3, ESR1, EGFR, HIF-1A, VEGFR, JUN, INS, and STAT3. The findings from molecular docking suggest that the core ingredient exhibits favorable binding potential with the core target. Furthermore, the GO and KEGG enrichment analysis demonstrates that BZD can modulate multiple signaling pathways related to CRC, like the T cell receptor, PI3K-Akt, apoptosis, P53, and VEGF signaling pathway. In vitro, studies have shown that BZD dose-dependently inhibits colon cancer cell growth and invasion and promotes apoptosis. Animal experiments have shown that BZD treatment can reverse abnormal expression of PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53 genes. BZD also increases the ratio of CD4+ T cells to CD8+ T cells in the spleen and tumor tissues, boosting IFN-γ expression, essential for anti-tumor immunity. Furthermore, BZD has the potential to downregulate the PD-1 expression on T cell surfaces, indicating its ability to effectively restore T cell function by inhibiting immune checkpoints. The results of HE staining suggest that BZD exhibits favorable safety profiles. Conclusion: BZD treats CRC through multiple components, targets, and metabolic pathways. BZD can reverse the abnormal expression of genes such as PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53, and suppresses the progression of colorectal cancer by regulating signaling pathways such as PI3K-AKT, P53, and VEGF. Furthermore, BZD can increase the number of T cells and promote T cell activation in tumor-bearing mice, enhancing the immune function against colorectal cancer. Among them, quercetin, kaempferol, licochalcone A, naringenin, and formaronetin are more highly predictive components related to the T cell activation in colorectal cancer mice. This study is of great significance for the development of novel anti-cancer drugs. It highlights the importance of network pharmacology-based approaches in studying complex traditional Chinese medicine formulations.


Assuntos
Neoplasias Colorretais , Quempferóis , Animais , Camundongos , Simulação de Acoplamento Molecular , Caspase 3 , Farmacologia em Rede , Linfócitos T CD8-Positivos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quercetina , Proteína Supressora de Tumor p53 , Fator A de Crescimento do Endotélio Vascular , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB
13.
Eur J Med Chem ; 260: 115759, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659198

RESUMO

Acute myeloid leukemia (AML) patients often experience poor therapeutic outcomes and relapse after treatment with single-target drugs, representing the urgent need of new therapies. Simultaneous inhibition of multiple oncogenic signals is a promising strategy for tumor therapy. Previous studies have reported that concomitant inhibition of Fms-like tyrosine kinase 3 (FLT3) and histone deacetylases (HDACs) can significantly improve the therapeutic efficacy for AML. Herein, a series of novel dual FLT3/HDAC inhibitors were developed through a rational structure-based drug design strategy for the first time. Among them, multiple compounds showed potent and equivalent inhibitory activities against FLT3-ITD and HDAC1, with the representative compound 63 selectively inhibiting HDAC class I (HDAC1/2/3/8) and IIB isoforms (HDAC6) related to tumorigenesis, and intensively blocking proliferation of MV4-11 cells. The antiproliferation activity was proven to depend on the dual inhibition of FLT3 and HDAC1. Mechanism assays demonstrated that 63 prohibited both FLT3 and HDAC pathways, induced apoptosis and arrested cell cycle in MV4-11 cells in a dose-dependent manner. In summary, this study validated the therapeutic potential of a kind of dual FLT3/HDAC inhibitors for AML and provided novel compounds for further biological investigation on concomitant inhibition of FLT3/HDAC pathways. Additionally, the structure-based drug design strategy described herein may provide profound enlightenment for developing superior anti-AML drugs.


Assuntos
Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Humanos , Inibidores de Histona Desacetilases/farmacologia , Tirosina Quinase 3 Semelhante a fms , Apoptose , Carcinogênese , Leucemia Mieloide Aguda/tratamento farmacológico
14.
Eur J Med Chem ; 260: 115741, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607438

RESUMO

Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.


Assuntos
Desenvolvimento de Medicamentos , Neoplasias Cutâneas , Humanos , Proteólise , Quimera de Direcionamento de Proteólise , Tecnologia
15.
J Bone Joint Surg Am ; 105(19): 1502-1511, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37616388

RESUMO

BACKGROUND: Age-related rotator cuff tendinopathy (RCT) is associated with increased rotator cuff tear and postoperative retear rates. This study aimed to determine whether nicotinamide phosphoribosyltransferase (NAMPT) can alleviate degenerative RCT and prevent postoperative retears by reversing mitochondrial dysfunction in aged mice. METHODS: We assigned 32 young (4 months) and 64 aged (19 to 20 months) male wild-type C57BL/6 mice to young, aged, and aged NAMPT-treated (ANAMPT) groups (n = 32 each). Mice in the ANAMPT group underwent subacromial injection with NAMPT-loaded fibrin gel, whereas the other 2 groups were injected with fibrin gel alone. Histological staining and each of the biomechanical and mitochondrial function tests were performed using 8 samples each. RESULTS: Histological staining in the aged group revealed decreased cellularity, disrupted fiber architecture, and reduced type-I collagen content inside tendon tissues proximal to the enthesis, demonstrating the spontaneous development of age-related degenerative RCT. Compared with the young group, the maximum tendon-to-bone failure load (4.22 ± 0.81 versus 5.52 ± 0.81 N, p = 0.0106) and maximum suture cut-through force (0.83 ± 0.08 versus 1.07 ± 0.10 N, p = 0.0006) of degenerated tendon tissues in the aged group were significantly lower. Significantly reduced nicotinamide adenine dinucleotide (NAD + ) levels, adenosine triphosphate (ATP) production, and citrate synthase activity indicated that mitochondrial dysfunction was closely related to the development of the degenerative RCT. Furthermore, NAMPT-improved mitochondrial function alleviated age-induced degenerative histological changes and increased the maximum failure load (5.32 ± 0.68 N, p = 0.0375) and maximum suture cut-through force (0.99 ± 0.13 N, p = 0.0285). CONCLUSIONS: Spontaneously developed degenerative RCT in aged mice mimicked the clinical situation in elderly patients. NAMPT-improved mitochondrial function could alleviate age-induced degenerative RCT and prevent postoperative suture cut-through of tendons with degenerative RCT. CLINICAL RELEVANCE: This study confirmed the spontaneous development of degenerative RCT in aged mice, which will facilitate future studies of this condition. The results also suggest that NAMPT offers a novel therapeutic approach for treating age-related degenerative RCT.

16.
J Nutr Biochem ; 119: 109404, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311491

RESUMO

Type 2 diabetes mellitus (T2DM), a complex metabolism disease, which was characterized by metabolic disorders including hyperglycemia, has become a major health problem due to the increasing prevalence worldwide. γ-glutamylcysteine (γ-GC) as an immediate precursor of glutathione (GSH) was originally used for the treatment of sepsis, inflammation bowel disease, and senescence. Here, we evaluated the capacity of γ-GC on diabetes-related metabolic parameters in db/db mice and insulin resistance (IR) amelioration in cells induced by palmitic acid (PA). Our data suggested that γ-GC treatment decreased body weight, reduced adipose tissue size, ameliorated ectopic fat deposition in liver, increased the GSH content in liver, improved glucose control and other diabetes-related metabolic parameters in vivo. Moreover, in vitro experiments showed that γ-GC could maintain the balance of free fatty acids (FFAs) and glucose uptake through regulating the translocation of CD36 and GLUT4 from cytoplasm to plasma membrane. Furthermore, our finding also provided evidence that γ-GC could activate Akt not only via adenylate cyclase (AC)/cAMP/PI3K signaling pathway, but also via IGF-1R/IRS1/PI3K signaling pathway to improve IR and hepatic steatosis. Blocking either of two signaling pathways could not activate Akt activation induced by γ-GC. This unique characteristic ensures the important role of γ-GC in glucose metabolism. Collectively, these results suggested that γ-GC could serve as a candidate dipeptide for the treatment of T2DM and related chronic diabetic complications via activating AC and IGF-1R/IRS1/PI3K/Akt signaling pathways to regulate CD36 and GLUT4 trafficking.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Resistência à Insulina , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Adenilil Ciclases/metabolismo , Insulina/metabolismo , Transdução de Sinais , Dipeptídeos , Fígado Gorduroso/tratamento farmacológico
17.
Eur J Med Chem ; 256: 115448, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163951

RESUMO

In recent years, fms-like tyrosine kinase 3 (FLT3) was confirmed as an exciting target for treatment of AML. However, resistance to FLT3 inhibitors caused by acquired point mutations in tyrosine kinase domain (TKD) have limited their sustained efficacious. Thus, there remains an unmet need to develop high-efficacy FLT3 inhibitors against both FLT3 internal tandem duplication (ITD) and FLT3 (TKD) mutations. Herein, we describe the discovery of compound LT-540-717 (32), a potent FLT3 inhibitor (IC50: 0.62 nM), starting from FN-1501. Compound 32 exhibited highly inhibitory activity against several acquired FLT3 mutations including FLT3 (ITD, D835V), FLT3 (ITD, F691L), FLT3 (D835Y) and FLT3 (D835V). Additionally, 32 displayed potent antiproliferative activity against FLT3-mutation driven BaF3 and AML cells. Oral administration of 32 (25 mg/kg, QD) significantly prohibited tumor growth (tumor-inhibition rate is 94.18%), and no obvious side effect was observed even when increasing dose to 50 mg/kg (tumor-inhibition rate is 93.98%). Furthermore, 32 showed an acceptable bioavailability (F = 33.3% in rat and 72.7% in beagles), a suitable half-life time (T1/2 = 3.5 h in rat and T1/2 = 11.1 h in beagles), and a satisfactory metabolic stability. In summary, these results show the therapeutic potential of 32 to become a new anti-AML drug, especially for AML harboring dual FLT3 (ITD, TKD) mutations.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Cães , Animais , Ratos , Tirosina Quinase 3 Semelhante a fms/genética , Leucemia Mieloide Aguda/patologia , Linhagem Celular Tumoral , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia
18.
Ther Clin Risk Manag ; 19: 193-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876223

RESUMO

Purpose: To compare the effects of an allogeneic bone graft and a non-filled bone graft on the rate of osteotomy gap union in medial opening wedge high tibial osteotomy (MOWHTO) with an opening width less than 10 mm. Methods: A total of 65 patients undergoing MOWHTO between January 2018 and December 2020 were enrolled in this retrospective study. The patients were divided into two groups: the allograft group (MOWHTO with allogeneic bone grafting, 30 patients) and the non-filling group (MOWHTO without bone void fillers, 35 patients). The clinical outcomes, including the Western Ontario and McMaster Universities Osteoarthritis index (WOMAC), Lysholm score, and post-operative complications, were compared. The radiographic evaluation included changes in hip-knee-ankle angle (HKA), medial proximal tibial angle (MPTA), femorotibial angle (FTA), and weight-bearing line ratio (WBLR) at pre-operation, at two-day post-operation, and the last follow-up. Radiographs were obtained at three, six and twelve months post-surgery, and at the time of the last follow-up to assess the fill area of the osteotomy gap. The union rate of the osteotomy gap was calculated and compared, and risk factors that may affect the rate of osteotomy gap union were also discussed. Results: The rate of osteotomy gap union at 3 and 6 months after the operation in the allograft group was significantly higher compared with the non-filling group (all P<0.05), while no significant difference was found after the 1-year post-operative and at the last follow-up. Also, the WOMAC and Lysholm scores of the allograft group were significantly higher than those of the non-filling group (all P<0.05), and there was no significant difference between the two groups at the last follow-up. Conclusion: Filling the gaps with the allograft bones may accelerate the union of osteotomy gap, improve clinical outcomes, and have important implications for patient rehabilitation in the early post-operative course. Bone grafting did not affect the final rate of osteotomy gap union and the clinical score of patients.

19.
J Cachexia Sarcopenia Muscle ; 14(2): 1003-1018, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36864250

RESUMO

BACKGROUND: It is well known that muscle disuse atrophy is associated with mitochondrial dysfunction, which is implicated in reduced nicotinamide adenine dinucleotide (NAD+ ) levels. Nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in NAD+ biosynthesis, may serve as a novel strategy to treat muscle disuse atrophy by reversing mitochondrial dysfunction. METHODS: To investigate the effects of NAMPT on the prevention of disuse atrophy of skeletal muscles predominantly composed of slow-twitch (type I) or fast-twitch (type II) fibres, rabbit models of rotator cuff tear-induced supraspinatus muscle atrophy and anterior cruciate ligament (ACL) transection-induced extensor digitorum longus (EDL) atrophy were established and then administered NAMPT therapy. Muscle mass, fibre cross-sectional area (CSA), fibre type, fatty infiltration, western blot, and mitochondrial function were assayed to analyse the effects and molecular mechanisms of NAMPT in preventing muscle disuse atrophy. RESULTS: Acute disuse of the supraspinatus muscle exhibited significant loss of mass (8.86 ± 0.25 to 5.10 ± 0.79 g; P < 0.001) and decreased fibre CSA (3939.6 ± 136.1 to 2773.4 ± 217.6 µm2 , P < 0.001), which were reversed by NAMPT (muscle mass 6.17 ± 0.54 g, P = 0.0033; fibre CSA, 3219.8 ± 289.4 µm2 , P = 0.0018). Disuse-induced impairment of mitochondrial function were significantly improved by NAMPT, including citrate synthase activity (40.8 ± 6.3 to 50.5 ± 5.6 nmol/min/mg, P = 0.0043), and NAD+ biosynthesis (279.9 ± 48.7 to 392.2 ± 43.2 pmol/mg, P = 0.0023). Western blot revealed that NAMPT increases NAD+ levels by activating NAMPT-dependent NAD+ salvage synthesis pathway. In supraspinatus muscle atrophy due to chronic disuse, a combination of NAMPT injection and repair surgery was more effective than repair in reversing muscle atrophy. Although the predominant composition of EDL muscle is fast-twitch (type II) fibre type that differ from supraspinatus muscle, its mitochondrial function and NAD+ levels are also susceptible to disuse. Similar to the supraspinatus muscle, NAMPT-elevated NAD+ biosynthesis was also efficient in preventing EDL disuse atrophy by reversing mitochondrial dysfunction. CONCLUSIONS: NAMPT-elevated NAD+ biosynthesis can prevent disuse atrophy of skeletal muscles that predominantly composed with either slow-twitch (type I) or fast-twitch (type II) fibres by reversing mitochondrial dysfunction.


Assuntos
Transtornos Musculares Atróficos , NAD , Animais , Coelhos , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Transtornos Musculares Atróficos/tratamento farmacológico , Transtornos Musculares Atróficos/metabolismo
20.
ACS Omega ; 8(9): 8219-8226, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910949

RESUMO

Hydrothermal liquefaction (HTL) is one of the most promising technologies for biofuel production. The preparation and application of catalysts for HTL have been the research focus in recent years. In this study, a new synergistic catalytic process strategy is proposed. CuO-CeO2/γ-Al2O3 was used as an in situ hydrogen donor catalyst and Ni-Co/SAPO-34 was synthesized for hydroprocessing to improve bio-oil production process. The results of XRD and XPS demonstrated that the metal components were well supported on the catalyst. When the two catalysts were mixed, the yield of bio-oil increased from 51.00% to 64.51%, the carbon recovery rate raised from 69.53% to 88.18%, the energy recovery rate grew from 63.42% to 80.22%, and the S content is relatively reduced by 83.3%. Also, TG analysis showed that the content of light components in bio-oil increased. Moreover, the hydrocarbons and alcohols were observed to a higher proportion from the GC-MS analysis. This new method still has high catalytic activity after repeated use for five times. This study provides a new idea for preparing higher yield and superior quality bio-oil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA