Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 11(6): 2788-2805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456573

RESUMO

Lipin 1 is an intracellular protein acting as a phosphatidic acid phosphohydrolase enzyme controlling lipid metabolism. Human recessive mutations in LPIN1 cause recurrent, early-onset myoglobinuria, a condition normally associated with muscle pain and weakness. Whether and how lipin 1 deficiency in humans leads to peripheral neuropathy is yet unclear. Herein, two novel compound heterozygous mutations in LPIN1 with neurological disorders, but no myoglobinuria were identified in an adult-onset syndromic myasthenia family. The present study sought to explore the pathogenic mechanism of LPIN1 in muscular and neural development. Methods: The clinical diagnosis of the proband was compared to the known 48 cases of LPIN1 recessive homozygous mutations. Whole-exome sequencing was carried out on the syndromic myasthenia family to identify the causative gene. The pathogenesis of lipin 1 deficiency during somitogenesis and neurogenesis was investigated using the zebrafish model. Whole-mount in situ hybridization, immunohistochemistry, birefringence analysis, touch-evoke escape response and locomotion assays were performed to observe in vivo the changes in muscles and neurons. The conservatism of the molecular pathways regulated by lipin 1 was evaluated in human primary glioblastoma and mouse myoblast cells by siRNA knockdown, drug treatment, qRT-PCR and Western blotting analysis. Results: The patient exhibited adult-onset myasthenia accompanied by muscle fiber atrophy and nerve demyelination without myoglobinuria. Two novel heterozygous mutations, c.2047A>C (p.I683L) and c.2201G>A (p.R734Q) in LPIN1, were identified in the family and predicted to alter the tertiary structure of LPIN1 protein. Lipin 1 deficiency in zebrafish embryos generated by lpin1 morpholino knockdown or human LPIN1 mutant mRNA injections reproduced the myotomes defects, a reduction both in primary motor neurons and secondary motor neurons projections, morphological changes of post-synaptic clusters of acetylcholine receptors, and myelination defects, which led to reduced touch-evoked response and abnormalities of swimming behaviors. Loss of lipin 1 function in zebrafish and mammalian cells also exhibited altered expression levels of muscle and neuron markers, as well as abnormally enhanced Notch signaling, which was partially rescued by the specific Notch pathway inhibitor DAPT. Conclusions: These findings pointed out that the compound heterozygous mutations in human LPIN1 caused adult-onset syndromic myasthenia with peripheral neuropathy. Moreover, zebrafish could be used to model the neuromuscular phenotypes due to the lipin 1 deficiency, where a novel pathological role of over-activated Notch signaling was discovered and further confirmed in mammalian cell lines.


Assuntos
Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Fosfatidato Fosfatase/deficiência , Peixe-Zebra/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Células HEK293 , Humanos , Camundongos , Músculo Esquelético/metabolismo , Mutação/genética , Mioblastos/metabolismo , Mioglobinúria/genética , Mioglobinúria/metabolismo , Neurônios/metabolismo , Fosfatidato Fosfatase/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Peixe-Zebra/genética
2.
Chem Commun (Camb) ; 56(94): 14869-14872, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33174884

RESUMO

Exosomes (a type of nanoscale extracellular vesicle with a size range of 30-100 nm) mediate cell-cell communication by transferring functional biomolecules, and play an important role in various physiological and pathological processes, including tumor development and progression. More new and effective techniques for visualizing and tracking exosomes in cell-cell communication are highly desirable. However, the application of commonly used exosome-labeling probes is limited by the need for specificity and strict pH tolerance. We describe here the construction and testing of a novel exosome labeling fluorescent probe termed as "ExoTracker", which displayed low cytotoxicity and a high fluorescence intensity in acidic environments. ExoTracker was applied for effective tracking of exosomes in cell endocytosis.


Assuntos
Endocitose , Exossomos/metabolismo , Corantes Fluorescentes/metabolismo , Concentração de Íons de Hidrogênio , Transporte Proteico
3.
Front Genet ; 11: 596078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424927

RESUMO

As one of the most malicious cancers, pancreatic cancer is difficult to treat due to the lack of effective early diagnosis. Therefore, it is urgent to find reliable diagnostic and predictive markers for the early detection of pancreatic cancer. In recent years, the detection of circulating cell-free DNA (cfDNA) methylation in plasma has attracted global attention for non-invasive and early cancer diagnosis. Here, we carried out a genome-wide cfDNA methylation profiling study of pancreatic ductal adenocarcinoma (PDAC) patients by methylated DNA immunoprecipitation coupled with high-throughput sequencing (MeDIP-seq). Compared with healthy individuals, 775 differentially methylated regions (DMRs) located in promoter regions were identified in PDAC patients with 761 hypermethylated and 14 hypomethylated regions; meanwhile, 761 DMRs in CpG islands (CGIs) were identified in PDAC patients with 734 hypermethylated and 27 hypomethylated regions (p-value < 0.0001). Then, 143 hypermethylated DMRs were further selected which were located in promoter regions and completely overlapped with CGIs. After performing the least absolute shrinkage and selection operator (LASSO) method, a total of eight markers were found to fairly distinguish PDAC patients from healthy individuals, including TRIM73, FAM150A, EPB41L3, SIX3, MIR663, MAPT, LOC100128977, and LOC100130148. In conclusion, this work identified a set of eight differentially methylated markers that may be potentially applied in non-invasive diagnosis of pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA