Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 225: 63-72, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030187

RESUMO

INTRODUCTION: Paclitaxel is a microtubule-stabilizing drug used to treat several types of cancer, including ovarian and breast cancer. Because of its antiproliferative effect on vascular smooth muscle cells, balloons and stents are coated with paclitaxel for use in coronary revascularization and prevention of in-stent restenosis (ISR). However, mechanisms underlying ISR are complicated. Platelet activation is one of the major causes of ISR after percutaneous coronary intervention. Although the antiplatelet activity of paclitaxel was noted in rabbit platelets, the effect of paclitaxel on platelets remains unclear. This study investigated whether paclitaxel exhibits antiplatelet activity in human platelets. METHODS AND RESULTS: Paclitaxel inhibited platelet aggregation induced by collagen but not that induced by thrombin, arachidonic acid, or U46619, suggesting that paclitaxel is more sensitive to the inhibition of collagen-induced platelet activation. Moreover, paclitaxel blocked collagen receptor glycoprotein (GP) VI downstream signaling molecules, including Lyn, Fyn, PLCγ2, PKC, Akt, and MAPKs. However, paclitaxel did not directly bind to GPVI and cause GPVI shedding, as detected by surface plasmon resonance and flow cytometry, respectively, indicating that paclitaxel may interfere with GPVI downstream signaling molecules, such as Lyn and Fyn. Paclitaxel also prevented granule release and GPIIbIIIa activation induced by collagen and low convulxin doses. Moreover, paclitaxel attenuated pulmonary thrombosis and delayed platelet thrombus formation in mesenteric microvessels without significantly affecting hemostasis. CONCLUSION: Paclitaxel exerts antiplatelet and antithrombotic effects. Thus, paclitaxel may provide additional benefits beyond its antiproliferative effect when used in drug-coated balloons and drug-eluting stents for coronary revascularization and prevention of ISR.


Assuntos
Reestenose Coronária , Stents Farmacológicos , Intervenção Coronária Percutânea , Animais , Humanos , Coelhos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Stents Farmacológicos/efeitos adversos , Fibrinolíticos , Reestenose Coronária/etiologia , Reestenose Coronária/terapia , Resultado do Tratamento , Stents/efeitos adversos , Intervenção Coronária Percutânea/efeitos adversos , Colágeno , Angiografia Coronária/efeitos adversos
2.
Biomed Pharmacother ; 153: 113531, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076516

RESUMO

Platelets play a crucial role on hemostasis and are also involved in cardiovascular diseases, such as heart attack and stroke. Artesunate has been reported to possess multiple biological activities, including antitumor and anti-inflammatory activities. However, its effect on platelet activation remains unclear. Thus, we explored the detailed mechanisms underlying its antiplatelet effect. For the in vitro study, the data indicated that artesunate inhibited platelet aggregation induced by collagen, but not thrombin or U46619, indicating that artesunate may selectively inhibit collagen-mediated platelet activation Artesunate also blocked glycoprotein VI (GPVI) downstream signaling, including Syk, PLCγ2, PKC, Akt, and MAPKs. Moreover, artesunate could compete with collagen for binding to collagen receptor and bind to human recombinant GPVI with a high affinity (KD = 44 nM), indicating that it may directly interfere with GPVI. Artesunate also reduced collagen-induced granule release, calcium mobilization, and GPIIbIIIa activation. For the in vivo study, artesunate markedly prevented pulmonary thrombosis and delayed platelet thrombus formation in mesenteric veins and arteries but had minimal effects on hemostasis. In conclusion, we for the first time demonstrated that artesunate acts as a GPVI antagonist and effectively prevents platelet activation and thrombus formation with minimal risk of bleeding, highlighting its therapeutic potential in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Trombose , Artesunato/farmacologia , Artesunato/uso terapêutico , Plaquetas , Doenças Cardiovasculares/metabolismo , Colágeno/metabolismo , Humanos , Ativação Plaquetária , Agregação Plaquetária , Trombose/tratamento farmacológico , Trombose/metabolismo , Trombose/prevenção & controle
3.
Artigo em Inglês | MEDLINE | ID: mdl-34824589

RESUMO

OBJECTIVE: Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). METHODS: The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). RESULTS: AU expressively reduced NO production and COX-2, TNF-α, IL-1 ß, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. CONCLUSION: The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.

4.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500771

RESUMO

Vincristine is a clinically used antimicrotubule drug for treating patients with lymphoma. Due to its property of increasing platelet counts, vincristine is also used to treat patients with immune thrombocytopenia. Moreover, antiplatelet agents were reported to be beneficial in thrombotic thrombocytopenic purpura (TTP). Therefore, we investigated the detailed mechanisms underlying the antiplatelet effect of vincristine. Our results revealed that vincristine inhibited platelet aggregation induced by collagen, but not by thrombin, arachidonic acid, and the thromboxane A2 analog U46619, suggesting that vincristine exerts higher inhibitory effects on collagen-mediated platelet aggregation. Vincristine also reduced collagen-mediated platelet granule release and calcium mobilization. In addition, vincristine inhibited glycoprotein VI (GPVI) signaling, including Syk, phospholipase Cγ2, protein kinase C, Akt, and mitogen-activated protein kinases. In addition, the in vitro PFA-100 assay revealed that vincristine did not prolong the closure time, and the in vivo study tail bleeding assay showed that vincristine did not prolong the tail bleeding time; both findings suggested that vincristine may not affect normal hemostasis. In conclusion, we demonstrated that vincristine exerts antiplatelet effects at least in part through the suppression of GPVI signaling. Moreover, this property of antiplatelet activity of vincristine may provide additional benefits in the treatment of TTP.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Plaquetas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Trombocitopenia/tratamento farmacológico , Vincristina/farmacologia , Antineoplásicos Fitogênicos/química , Plaquetas/imunologia , Colágeno/antagonistas & inibidores , Colágeno/farmacologia , Humanos , Conformação Molecular , Neoplasias/imunologia , Agregação Plaquetária/efeitos dos fármacos , Trombocitopenia/imunologia , Vincristina/química
5.
J Cell Mol Med ; 25(19): 9434-9446, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34448532

RESUMO

Naphthalimide derivatives have multiple biological activities, including antitumour and anti-inflammatory activities. We previously synthesized several naphthalimide derivatives; of them, compound 5 was found to exert the strongest inhibitory effect on human DNA topoisomerase II activity. However, the effects of naphthalimide derivatives on platelet activation have not yet been investigated. Therefore, the mechanism underlying the antiplatelet activity of compound 5 was determined in this study. The data revealed that compound 5 (5-10 µM) inhibited collagen- and convulxin- but not thrombin- or U46619-mediated platelet aggregation, suggesting that compound 5 is more sensitive to the inhibition of glycoprotein VI (GPVI) signalling. Indeed, compound 5 could inhibit the phosphorylation of signalling molecules downstream of GPVI, followed by the inhibition of calcium mobilization, granule release and GPIIb/IIIa activation. Moreover, compound 5 prevented pulmonary embolism and prolonged the occlusion time, but tended to prolong the bleeding time, indicating that it can prevent thrombus formation but may increase bleeding risk. This study is the first to demonstrate that the naphthalimide derivative compound 5 exerts antiplatelet and antithrombotic effects. Future studies should modify compound 5 to synthesize more potent and efficient antiplatelet agents while minimizing bleeding risk, which may offer a therapeutic potential for cardiovascular diseases.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Naftalimidas/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Estrutura Molecular , Naftalimidas/química , Agregação Plaquetária/efeitos dos fármacos , Transdução de Sinais , Trombose/tratamento farmacológico , Trombose/etiologia , Trombose/patologia
6.
Autophagy ; 17(12): 4141-4158, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33749503

RESUMO

Basal macroautophagy/autophagy has recently been found in anucleate platelets. Platelet autophagy is involved in platelet activation and thrombus formation. However, the mechanism underlying autophagy in anucleate platelets require further clarification. Our data revealed that LC3-II formation and SQSTM1/p62 degradation were noted in H2O2-activated human platelets, which could be blocked by 3-methyladenine and bafilomycin A1, indicating that platelet activation may cause platelet autophagy. AMPK phosphorylation and MTOR dephosphorylation were also detected, and block of AMPK activity by the AMPK inhibitor dorsomorphin reversed SQSTM1 degradation and LC3-II formation. Moreover, autophagosome formation was observed through transmission electron microscopy and deconvolution microscopy. These findings suggest that platelet autophagy was induced partly through the AMPK-MTOR pathway. In addition, increased LC3-II expression occurred only in H2O2-treated Atg5f/f platelets, but not in H2O2-treated atg5-/- platelets, suggesting that platelet autophagy occurs during platelet activation. atg5-/- platelets also exhibited a lower aggregation in response to agonists, and platelet-specific atg5-/- mice exhibited delayed thrombus formation in mesenteric microvessles and decreased mortality rate due to pulmonary thrombosis. Notably, metabolic analysis revealed that sphingolipid metabolism is involved in platelet activation, as evidenced by observed several altered metabolites, which could be reversed by dorsomorphin. Therefore, platelet autophagy and platelet activation are positively correlated, partly through the interconnected network of sphingolipid metabolism. In conclusion, this study for the first time demonstrated that AMPK-MTOR signaling could regulate platelet autophagy. A novel linkage between AMPK-MTOR and sphingolipid metabolism in anucleate platelet autophagy was also identified: platelet autophagy and platelet activation are positively correlated.Abbreviations: 3-MA: 3-methyladenine; A.C.D.: citric acid/sod. citrate/glucose; ADP: adenosine diphosphate; AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy-related; B4GALT/LacCS: beta-1,4-galactosyltransferase; Baf-A1: bafilomycin A1; BECN1: beclin 1; BHT: butylate hydrooxytoluene; BSA: bovine serum albumin; DAG: diacylglycerol; ECL: enhanced chemiluminescence; EDTA: ethylenediamine tetraacetic acid; ELISA: enzyme-linked immunosorbent assay; GALC/GCDase: galactosylceramidase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/GluSDase: glucosylceramidase beta; GPI: glycosylphosphatidylinositol; H2O2: hydrogen peroxide; HMDB: human metabolome database; HRP: horseradish peroxidase; IF: immunofluorescence; IgG: immunoglobulin G; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAMP1: lysosomal associated membrane protein 1; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MPV: mean platelet volume; MTOR: mechanistic target of rapamycin kinase; ox-LDL: oxidized low-density lipoprotein; pAb: polyclonal antibody; PC: phosphatidylcholine; PCR: polymerase chain reaction; PI3K: phosphoinositide 3-kinase; PLS-DA: partial least-squares discriminant analysis; PRP: platelet-rich plasma; Q-TOF: quadrupole-time of flight; RBC: red blood cell; ROS: reactive oxygen species; RPS6KB/p70S6K: ribosomal protein S6 kinase B; SDS: sodium dodecyl sulfate; S.E.M.: standard error of the mean; SEM: scanning electron microscopy; SGMS: sphingomyelin synthase; SM: sphingomyelin; SMPD/SMase: sphingomyelin phosphodiesterase; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; UGT8/CGT: UDP glycosyltransferase 8; UGCG/GCS: UDP-glucose ceramide glucosyltransferase; ULK1: unc-51 like autophagy activating kinase 1; UPLC: ultra-performance liquid chromatography; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; WBC: white blood cell; WT: wild type.


Assuntos
Autofagia , Trombose , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/fisiologia , Plaquetas/metabolismo , Cromatografia Líquida , Peróxido de Hidrogênio , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Esfingolipídeos , Serina-Treonina Quinases TOR/metabolismo , Espectrometria de Massas em Tandem
7.
Int J Mol Med ; 45(2): 687, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31894260

RESUMO

Following the publication of the above paper, the authors noted that the first author affiliation was presented incorrectly. Essentially, 'School of Medicine' had been omitted from the address. Therefore, the author and affiliation details for this paper should have been presented as follows (the changes are highlighted in bold): THANASEKARAN JAYAKUMAR1*, KAO­CHANG LIN1,2*, WAN-JUNG LU1,3, CHIA­YING LIN4, GERALDINE PITCHAIRAJ5, JIUN­YI LI4,6 and JOEN­RONG SHEU1,4. 1Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei; 2Department of Neurology, Chi Mei Medical Center, Tainan; 3Department of Medical Research, Taipei Medical University Hospital; 4Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C.; 5Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; Department of Cardiovascular Surgery, Mackay Memorial Hospital, and Mackay Medical College, Taipei, Taiwan, R.O.C. The authors regret that the error with the first author affiliation was not noticed prior to the publication of their paper, and apologize for any inconvenience caused. [The original article was published in International Journal of Molecular Medicine 39: 174­182, 2017; DOI: 10.3892/ijmm.2016.2822].

8.
Int J Mol Med ; 45(2): 688, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31894291

RESUMO

Following the publication of the above paper, the authors noted that the third author affiliation was presented incorrectly. The third author affiliation should have been written as 'Department of Pharmacology, School of Medicine, College of Medicine, and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan'. Therefore, the author and affiliation details for this paper should have been presented as follows (the changes are highlighted in bold): YI CHANg1­3*, WEN­HsIEN HsU2,4*, WEN­BIN YANg5, THANAsEKARAN JAYAKUMAR3, TZU­YIN LEE3, JOEN­RONg sHEU3, WAN­JUNg LU3,6 and JIUN­YI LI3,7. 1Department of Anesthesiology, Shin Kong Wu Ho­Su Memorial Hospital, Taipei 111; 2School of Medicine, Fu­Jen Catholic University, Xin Zhuang, New Taipei City 242; 3Department of Pharmacology, School of Medicine, College of Medicine, and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110; 4Department of Surgery, Wan­Fang Hospital, Taipei Medical University, Taipei 116; 5Genomics Research Center, Academia Sinica, Taipei 115; 6Department of Medical Research and Translational Laboratory, Research Department, Taipei Medical University Hospital, Taipei 110; 7Department of Cardiovascular Surgery, Mackay Memorial Hospital, and Mackay Medical College, Taipei 104, Taiwan, R.O.C.. The authors regret that the error with the third author affiliation was not noticed prior to the publication of their paper, and apologize for any inconvenience caused. [The original article was published in International Journal of Molecular Medicine 40: 1520­1528, 2017; DOI: 10.3892/ijmm.2017.3133].

9.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717348

RESUMO

Auraptene is the most abundant coumarin derivative from plants. The pharmacological value of this compound has been well demonstrated, especially in the prevention of cancer and neurodegenerative diseases. Platelet activation is a major factor contributing to arterial thrombosis. Thus, this study evaluated the influence of auraptene in platelet aggregation and thrombotic formation. Auraptene inhibited platelet aggregation in human platelets stimulated with collagen only. However, auraptene was not effective in inhibiting platelet aggregation stimulated with thrombin, arachidonic acid, and U46619. Auraptene also repressed ATP release, [Ca2+]i mobilization, and P-selectin expression. Moreover, it markedly blocked PAC-1 binding to integrin αIIbß3. However, it had no influence on properties related to integrin αIIbß3-mediated outside-in signaling, such as the adhesion number, spreading area of platelets, and fibrin clot retraction. Auraptene inhibited the phosphorylation of Lyn-Fyn-Syk, phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), Akt, and mitogen-activated protein kinases (MAPKs; extracellular-signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK1/2), but not p38 MAPK). Neither SQ22536, an adenylate cyclase inhibitor, nor ODQ, a guanylate cyclase inhibitor, reversed the auraptene-mediated inhibition of platelet aggregation. Auraptene reduced mortality caused by adenosine diphosphate (ADP)-induced pulmonary thromboembolism. In conclusion, this study provides definite evidence that auraptene signifies a potential therapeutic agent for preventing thromboembolic disorders.


Assuntos
Cumarínicos/uso terapêutico , Ativação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/mortalidade , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Cálcio/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Humanos , Camundongos , Nucleotídeos Cíclicos/metabolismo , Selectina-P/metabolismo , Fosforilação/efeitos dos fármacos , Embolia Pulmonar/sangue , Transdução de Sinais/efeitos dos fármacos
10.
J Clin Med ; 8(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635287

RESUMO

Embelin is a quinone derivative and found in the fruits of Embelia ribes Burm.f. Embelin has been identified as a small molecular inhibitor of X-chromosome-linked inhibitor of apoptosis proteins, and has multiple biological activities, including antioxidation, anti-inflammation, and antitumor effects. However, the effect of embelin in platelets remains unclear. Thus, this study investigated the antiplatelet mechanism of embelin. Our data revealed that embelin could inhibit platelet aggregation induced by various agonists, including the protein kinase C (PKC) activator phorbol 12,13-dibutyrate (PDBu). Embelin, as well as the PKC inhibitor Ro 31-8220, markedly reduced PDBu-mediated phosphorylation of the PKC substrate, suggesting that embelin may be a PKC inhibitor for platelets. Embelin could block PKC downstream signaling and events, including the inhibition of protein kinase B and mitogen-activated protein kinase activation, granule release, and glycoprotein IIbIIIa activation. Moreover, embelin could delay thrombus formation in the mesenteric microvessels of mice, but did not significantly affect the tail bleeding time. In conclusion, we demonstrated that embelin is a PKC inhibitor and possesses antiplatelet and antithrombotic effects. The further analysis is necessary to more accurately determine clinical therapeutic potential of embelin in all clinical thromboembolic events with disturbance of thrombocyte function.

11.
Food Funct ; 9(8): 4500-4507, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30083664

RESUMO

Licochalcone A (LA), an active ingredient of licorice, has multiple biological activities, including antioxidative and anti-inflammatory activities. Although LA exerts antitumor effects in various cancer cells, its role in gliomas remains unclear. Therefore, this study determined whether LA inhibits glioma cell growth in vitro and in vivo. The present data revealed that LA effectively inhibited the growth of U87 glioma cells by inducing cell cycle arrest in the G0/G1 and G2/M phases; cell cycle arrest was attributed to the LA-mediated reduction of mRNA and protein levels of cyclins and cyclin-dependent kinases. Moreover, subcutaneous (flank) and orthotopic (brain) tumor models were used to determine the role of LA in gliomas. LA significantly alleviated tumor growth in both models. These findings indicate that LA exerts antitumor effects in gliomas in vitro and in vivo and that it is a potential agent for treating glioblastoma multiforme.


Assuntos
Antineoplásicos/administração & dosagem , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/administração & dosagem , Glioma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Glioma/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Nus
12.
J Cell Mol Med ; 22(4): 2142-2152, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29369482

RESUMO

During platelet activation, fibrinogen binds to its specific platelet receptor, integrin αIIb ß3 , thus completing the final common pathway for platelet aggregation. Norcantharidin (NCTD) is a promising anticancer agent in China from medicinal insect blister beetle. In this study, we provided the evidence to demonstrate NCTD (0.1-1.0 µM) possesses very powerful antiplatelet activity in human platelets; nevertheless, it had no effects on surface P-selectin expression and only slight inhibition on ATP-release reaction in activated platelets. Moreover, NCTD markedly hindered integrin αIIb ß3 activation by interfering with the binding of FITC-labelled PAC-1. It also markedly reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as clot retraction. Additionally, NCTD attenuated phosphorylation of proteins such as integrin ß3 , Src and FAK in platelets spreading on immobilized fibrinogen. These results indicate that NCTD restricts integrin αIIb ß3 -mediated outside-in signalling in human platelets. Besides, NCTD substantially prolonged the closure time in human whole blood and increased the occlusion time of thrombotic platelet plug formation and prolonged the bleeding time in mice. In conclusion, NCTD has dual activities, it can be a chemotherapeutic agent for cancer treatment, and the other side it possesses powerful antiplatelet activity for treating thromboembolic disorders.


Assuntos
Antineoplásicos/farmacologia , Plaquetas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Fibrinogênio/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Adesão Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Selectina-P/metabolismo , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Trombose/patologia
13.
Int J Mol Med ; 40(5): 1520-1528, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28949377

RESUMO

Antiplatelet agents have considerable benefits in the treatment of thromboembolic diseases; however, these agents still have substantial limitations due to their severe side-effects. In this study, the antiplatelet activity of three newly synthesized saccharide based benzimidazole derivatives, M3BIM, Malto-BIM and Melibio-BIM, in collagen and thrombin-stimulated human platelets in vitro was examined. Among the compounds tested, only compound M3BIM exerted concentration (20-60 µM)-dependent inhibitory effects against collagen (1 µg/ml) and thrombin (0.01 U/ml)-induced washed human platelet aggregation. Moreover, at a concentration of 60 µM, M3BIM distinctly abolished collagen-induced adenosine triphosphate (ATP) release and intracellular Ca2+ mobilization. Additionally, this compound attenuated the collagen-induced phosphorylation of p47, a marker of the activation of protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK). However, Malto-BIM and Melibio-BIM were not effective in this regard. Moreover, the toxic effects of these compounds were evaluated using zebrafish embryo toxicity (ZET) assay, and the results revealed that all three compounds had no comparative cytotoxicity within the range of 25-200 µM. Overall, the results of this study provide evidence for the inhibitory effects of M3BIM on collagen-induced platelet aggregation in vitro compared to other imidazole derivatives. The presence of 1-imidazolyl moiety at one end with a longer chain length (three sugar moieties) may be mainly responsible for the observed effects of M3BIM. These results suggest that compound M3BIM may be used as a potential candidate for the treatment of aberrant platelet activation-related diseases as it inhibits the activation of p47 and p38 MAPK, and reduces ATP release and Ca2+ mobilization.


Assuntos
Benzimidazóis/química , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Cálcio/metabolismo , Colágeno/metabolismo , Humanos , Estrutura Molecular , Oligossacarídeos/síntese química , Fosforilação , Agregação Plaquetária/efeitos dos fármacos , Relação Estrutura-Atividade , Trombina/metabolismo , Peixe-Zebra , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Curr Pharm Biotechnol ; 18(7): 594-605, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828982

RESUMO

BACKGROUND: Benzimidazoles are privileged biomolecules which form an integral part of vitamin B12 and have been attracting numerous researchers all over the world to assess their potential therapeutic significance. OBJECTIVES: The comparative in vitro antiplatelet activity of newly synthesized benzimidazole derivatives, M3BIM, C2BIM, and L2BIM in thrombin, adenosine diphosphate (ADP) and epinephrineinduced washed human platelets was investigated. METHOD: Reversed-phase silica gel column chromatography, Aggregometry, Flow cytometry and Immunoblotting were used in this study. RESULTS: M3BIM exhibited a concentration (25-100 µM) dependent inhibitory effect on platelet aggregation induced by thrombin (0.01 U/mL) in washed human platelets and by epinephrine (10 µM) only at a maximum concentration of 500 µM in platelet-rich plasma (PRP); however, C2BIM and L2BIM had no response even at 500 µM against thrombin and 1mM against epinephrine-induced platelet aggregation. Moreover, all these three compounds were not inhibited platelet aggregation induced by ADP (20 µM). Additionally, these compounds showed no effects in thrombin-induced P-selectin expression and αIIbß3 activation, as evidenced by flow cytometry and clot reaction assays, respectively. Besides, M3BIM (100 µM) significantly abolished thrombin-induced Akt and mitogen-activated protein kinases (MAPKs) phosphorylation; whereas 200 µM C2BIM and L2BIM were not effective on these proteins. CONCLUSION: This study affords confirmation for the inhibitory effect of M3BIM in a low dose thrombin and epinephrine-induced platelet aggregation in vitro compared to other imidazole derivatives, C2BIM and L2BIM. These outcomes may recommend that M3BIM can be appraised as a prospective benzeimidazole compound for the treatment of thrombin -induced platelet defect and its related diseases.


Assuntos
Benzimidazóis/síntese química , Plaquetas/efeitos dos fármacos , Inibidores da Agregação Plaquetária/síntese química , Agregação Plaquetária/efeitos dos fármacos , Benzimidazóis/química , Benzimidazóis/farmacologia , Células Cultivadas , Citometria de Fluxo , Humanos , Estrutura Molecular , Selectina-P/metabolismo , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Plasma Rico em Plaquetas/efeitos dos fármacos
15.
Int J Mol Sci ; 18(7)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704925

RESUMO

Platelet activation is involved in cardiovascular diseases, such as atherosclerosis and ischemic stroke. Licochalcone A (LA), an active ingredient of licorice, exhibits multiple biological activities such as anti-oxidation and anti-inflammation. However, its role in platelet activation remains unclear. Therefore, the study investigated the antiplatelet mechanism of LA. Our data revealed that LA (2-10 µM) concentration dependently inhibited platelet aggregation induced by collagen, but not thrombin and U46619. LA markedly attenuated collagen-stimulated ATP release, P-selectin secretion, calcium mobilization, and GPIIbIIIa activation, but did not interfere with the collagen binding to platelets. Moreover, LA significantly reduced the activation of PLCγ2, PKC, Akt and MAPKs. Thus, LA attenuates platelet activation, possibly by inhibiting collagen receptor downstream signaling but not by blocking the collagen receptors. In addition, LA prevented adenosine diphosphate (ADP)-induced acute pulmonary thrombosis, fluorescein sodium-induced platelet thrombus formation, and middle cerebral artery occlusion/reperfusion-induced brain injury in mice, but did not affect normal hemostasis. This study demonstrated that LA effectively reduced platelet activation and thrombus formation, in part, through the inhibition of PLCγ2-PKC, Akt, and MAPK pathways, without the side effect of bleeding. These findings also indicate that LA may provide a safe and alternative therapeutic approach for preventing thromboembolic disorders such as stroke.


Assuntos
Chalconas/uso terapêutico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfolipase C gama/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombose/metabolismo , Trombose/prevenção & controle , Animais , Cálcio/metabolismo , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Selectina-P/metabolismo , Agregação Plaquetária/efeitos dos fármacos
16.
Int J Mol Med ; 39(1): 174-182, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27959381

RESUMO

Nobiletin, a bioactive polymethoxylated flavone, has been described to possess a diversity of biological effects through its antioxidant and anti-inflammatory properties. Vasodilator-stimulated phosphoprotein (VASP) is a common substrate for cyclic AMP and cyclic GMP-regulated protein kinases [i.e., cyclic AMP-dependent protein kinase (PKA; also known as protein kinase A) and cyclic GMP-dependent protein kinase (PKG; also known as protein kinase G)] and it has been shown to be directly phosphorylated by protein kinase C (PKC). In the present study, we demonstrate that VASP is phosphorylated by nobiletin in human platelets via a non-cyclic nucleotide-related mechanism. This was confirmed by the use of inhibitors of adenylate cyclase (SQ22536) and guanylate cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)], since they prevented VASP phosphorylation induced by nobiletin. Furthormore, this event was also not affected by specific inhibitors of PKA (H-89), PKG (KT5823) and PKC (Ro318220), representing cyclic nucleotide-dependent pathways upon nobiletin-induced VASP phosphorylation. Similarly, inhibitors of p38 mitogen-activated protein kinase (MAPK; SB203580), extracellular signal-regulated kinase 2 (ERK2; PD98059), c-Jun N-terminal kinase 1 (JNK1; SP600125), Akt (LY294002) and nuclear factor-κB (NF-κB; Bay11-7082) did not affect nobiletin­induced VASP phosphorylation. Moreover, electron spin resonance, dichlorofluorescein fluorescence and western blotting techniques revealed that nobiletin did not affect hydroxyl radicals (OH•), intracellular reactive oxygen species (ROS) and on protein carbonylation, respectively. Furthermore, the nobiletin­induced VASP phosphorylation was surprisingly reversed by the intracellular antioxidant, N-acetylcysteine (NAC), but not by the inhibitor of NADPH oxidase, diphenyleneiodonium chloride (DPI). It was surprising to observe the differential effects of nobiletin and NAC on VASP phosphorylation in human platelets, since they both have been reported to have antioxidant properties. The likely explanation for this discrepancy is that NAC may bind to allosteric sites on the receptor different from those that nobiletin binds to in human platelets. Taken together, our findings suggest that nobiletin induces VASP phosphorylation in human platelets through non-cyclic nucleotide-related mechanisms. Nevertheless, the exact mechanisms responsible for these effects need to be further confirmed in future studies.


Assuntos
Plaquetas/metabolismo , Moléculas de Adesão Celular/metabolismo , Citrus/química , Flavonas/farmacologia , Flavonoides/farmacologia , Proteínas dos Microfilamentos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosfoproteínas/metabolismo , Acetilcisteína/farmacologia , Plaquetas/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Radical Hidroxila/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
J Nutr Biochem ; 28: 1-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26878777

RESUMO

Nobiletin, a bioactive polymethoxylated flavone isolated from citrus fruits, has been proven to prevent cancer and inflammation. Dietary flavonoids have been shown to reduce the risk of cardiovascular diseases (CVDs), and platelet activation plays a crucial role in CVDs. This study investigated the effect of nobiletin on platelet activation in vitro and in vivo. Nobiletin (10-30µM) inhibited collagen- and arachidonic acid-induced platelet aggregation in washed human platelets, but it did not inhibit platelet aggregation induced by other agonists such as thrombin and 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin. Nobiletin inhibited the phosphorylation of phospholipase PLCγ2, protein kinase PKC, Akt and mitogen-activated protein kinase MAPKs in collagen-activated human platelets and markedly reduced intracellular calcium mobilization and hydroxyl radical (OH(·)) formation. Nobiletin did not affect either phorbol-12,13-dibutyrate-stimulated PKC activation or platelet aggregation. In addition, neither SQ22536, an adenylate cyclase inhibitor nor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a guanylate cyclase inhibitor, significantly reversed the nobiletin-mediated inhibition of platelet aggregation. Moreover, nobiletin substantially prolonged the closure time in whole blood according to platelet function analysis and increased the occlusion time of thrombotic platelet plug formation in mice. In conclusion, this study demonstrates for the first time that, in addition to being a potential agent for preventing tumor growth and inflammation, nobiletin exhibits potent antiplatelet activity, which initially inhibits the PLCγ2/PKC cascade and hydroxyl radical formation, subsequently suppresses the activation of Akt and MAPKs and ultimately inhibits platelet activation. Our study suggests that nobiletin represents a potential therapeutic agent for preventing or treating thromboembolic disorders.


Assuntos
Artérias/patologia , Flavonas/uso terapêutico , Trombose/prevenção & controle , Adulto , Ativação Enzimática , Flavonas/farmacologia , Humanos , Técnicas In Vitro , Fosfolipase C gama/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Proteína Quinase C/metabolismo , Adulto Jovem
18.
Phytother Res ; 30(2): 214-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26560814

RESUMO

Nobiletin, a bioactive polymethoxylated flavone (5,6,7,8,3(') ,4(') -hexamethoxyflavone), is abundant in citrus fruit peel. Although nobiletin exhibits antitumor activity against various cancer cells, the effect of nobiletin on glioma cells remains unclear. The aim of this study was to determine the effects of nobiletin on the human U87 and Hs683 glioma cell lines. Treating glioma cells with nobiletin (20-100 µm) reduced cell viability and arrested the cell cycle in the G0/G1 phase, as detected using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and propidium iodide (PI) staining, respectively; however, nobiletin did not induce cell apoptosis according to PI-annexin V double staining. Data from western blotting showed that nobiletin significantly attenuated the expression of cyclin D1, cyclin-dependent kinase 2, cyclin-dependent kinase 4, and E2 promoter-binding factor 1 (E2F1) and the phosphorylation of Akt/protein kinase B and mitogen-activated protein kinases, including p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Our data also showed that nobiletin inhibited glioma cell migration, as detected by both functional wound healing and transwell migration assays. Altogether, the present results suggest that nobiletin inhibits mitogen-activated protein kinase and Akt/protein kinase B pathways and downregulates positive regulators of the cell cycle, leading to subsequent suppression of glioma cell proliferation and migration. Our findings evidence that nobiletin may have potential for treating glioblastoma multiforme.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Flavonas/farmacologia , Glioma/patologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citrus/química , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Fator de Transcrição E2F1/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Curr Pharm Biotechnol ; 16(5): 451-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25751172

RESUMO

OBJECTIVE: CME-1 is a polysaccharide purified from the mycelia of medicinal mushroom Cordyceps sinensis, its molecular weight was determined to be 27.6 kDa by using nuclear magnetic resonance and gas chromatography-mass spectrometry. The initiation of arterial thromboses is relevant to various cardiovascular diseases (CVDs) and is believed to involve platelet activation. Our recent study exhibited that CME-1 has potent antiplatelet activity via the activation of adenylate cyclase/cyclic AMP ex vivo and in vivo. METHODS: The aggregometry, and immunoblotting were used in this study. RESULTS: In this study, the mechanisms of CME-1 in platelet activation is further investigated and found that CME-1 inhibited platelet aggregation as well as the ATP-release reaction, relative intracellular [Ca(+2)] mobilization, and the phosphorylation of phospholipase C (PLC)γ2 and protein kinase C (PKC) stimulated by collagen. CME-1 has no effects on inhibiting either convulxin, an agonist of glycoprotein VI, or aggretin, an agonist of integrin α2ß1 stimulated platelet aggregation. Moreover, this compound markedly diminished thrombin and arachidonic acid (AA) induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 2, c-Jun N-terminal kinase 1, and Akt. Treatment with SQ22536, an inhibitor of adenylate cyclase, markedly diminished the CME-1-mediated increasing of cyclic AMP level and reversed prostaglandin E1- or CME-1-mediated inhibition of platelet aggregation and p38 MAPK and Akt phosphorylation stimulated by thrombin or AA. Furthermore, phosphodiesterase activity of human platelets was not altered by CME-1. CONCLUSION: The crucial finding of this study is that the antiplatelet activity of CME-1 may initially inhibit the PLCγ2-PKC-p47 cascade, and inhibit PI3-kinase/Akt and MAPK phosphorylation through adenylate cyclase/ cyclic AMP activation, then inhibit intracellular [Ca(+2)] mobilization, and, ultimately, inhibit platelet activation. The novel role of CME-1 in antiplatelet activity indicates that this compound exhibits high therapeutic potential for treating or preventing CVDs.


Assuntos
Plaquetas/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Polissacarídeos/farmacologia , Plaquetas/metabolismo , Cordyceps , Humanos , Micélio , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
ScientificWorldJournal ; 2014: 745802, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25541625

RESUMO

Antrodia camphorata is a rare Taiwanese medicinal mushroom. Antrodia camphorata extract has been reported to exhibit antioxidant, anti-inflammation, antimetastasis, and anticancer activities and plays a role in liver fibrosis, vasorelaxation, and immunomodulation. Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Platelet activation plays a crucial role in intravascular thrombosis, which is involved in a wide variety of cardiovascular diseases. However, the effect of Antrodia camphorata on platelet activation remains unclear. We examined the effects of Antrodia camphorata on platelet activation. In the present study, Antrodia camphorata treatment (56-224 µg/mL) inhibited platelet aggregation induced by collagen, but not U46619, an analogue of thromboxane A2, thrombin, and arachidonic acid. Antrodia camphorata inhibited collagen-induced calcium (Ca(2+)) mobilization and phosphorylation of protein kinase C (PKC) and Akt. In addition, Antrodia camphorata significantly reduced the aggregation and phosphorylation of PKC in phorbol-12, 13-dibutyrate (PDBu) activated platelets. In conclusion, Antrodia camphorata may inhibit platelet activation by inhibiting of Ca(2+) and PKC cascade and the Akt pathway. Our study suggests that Antrodia camphorata may be a potential therapeutic agent for preventing or treating thromboembolic disorders.


Assuntos
Antrodia/química , Plaquetas/enzimologia , Sinalização do Cálcio/efeitos dos fármacos , Misturas Complexas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Proteína Quinase C/metabolismo , Trombose/tratamento farmacológico , Plaquetas/patologia , Misturas Complexas/química , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombose/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA