Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Med Chem ; 67(2): 1079-1092, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38166388

RESUMO

The DNA-encoded library (DEL) is a powerful hit generation tool for chemical biology and drug discovery; however, the optimization of DEL hits remained a daunting challenge for the medicinal chemistry community. In this study, hit compounds targeting the WIN binding domain of WDR5 were discovered by the initial three-cycle linear DEL selection, and their potency was further enhanced by a cascade DEL selection from the focused DEL designed based on the original first run DEL hits. As expected, these new compounds from the second run of focused DEL were more potent WDR5 inhibitors in the protein binding assay confirmed by the off-DNA synthesis. Interestingly, selected inhibitors exhibited good antiproliferative activity in two human acute leukemia cell lines. Taken together, this new cascade DEL selection strategy may have tremendous potential for finding high-affinity leads against WDR5 and provide opportunities to explore and optimize inhibitors for other targets.


Assuntos
DNA , Descoberta de Drogas , Humanos , Biblioteca Gênica , Ligação Proteica , DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
J Am Chem Soc ; 145(46): 25283-25292, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37857329

RESUMO

DNA-encoded chemical library (DEL) has been extensively used for lead compound discovery for decades in academia and industry. Incorporating an electrophile warhead into DNA-encoded compounds recently permitted the discovery of covalent ligands that selectively react with a particular cysteine residue. However, noncysteine residues remain underexplored as modification sites of covalent DELs. Herein, we report the design and utility of tyrosine-targeting DELs of 67 million compounds. Proteome-wide reactivity analysis of tyrosine-reactive sulfonyl fluoride (SF) covalent probes suggested three enzymes (phosphoglycerate mutase 1, glutathione s-transferase 1, and dipeptidyl peptidase 3) as models of tyrosine-targetable proteins. Enrichment with SF-functionalized DELs led to the identification of a series of tyrosine-targeting covalent inhibitors of the model enzymes. In-depth mechanistic investigation revealed their novel modes of action and reactive ligand-accessible hotspots of the enzymes. Our strategy of combining activity-based proteome profiling and covalent DEL enrichment (ABPP-CoDEL), which generated selective covalent binders against a variety of target proteins, illustrates the potential use of this methodology in further covalent drug discovery.


Assuntos
Proteoma , Tirosina , Proteoma/química , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Ligantes , DNA
3.
Signal Transduct Target Ther ; 8(1): 305, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591843

RESUMO

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Fator B de Crescimento do Endotélio Vascular , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Imunoterapia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
4.
Chemosphere ; 324: 138375, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905993

RESUMO

31P Nuclear Magnetic Resonance (31P NMR) is an important analytical tool for identifying and quantifying phosphorus-based compounds in aquatic environments. However, the precipitation method typically used for analyzing phosphorus species via 31P NMR has limited application. To expand the scope of the method and apply it to highly mineralized rivers and lakes worldwide, we present an optimization technique that employs H resin to assist phosphorus (P) enrichment in highly mineralized lake water. To explore how to reduce analysis interference from salt in highly mineralized water and improve the accuracy of P analysis using 31P NMR, we conducted case studies on Lake Hulun and Qing River. This study aimed to increase the efficiency of phosphorus extraction in highly mineralized water samples by using H resin and optimizing key parameters. The optimization procedure included determining the enriched water volume, H resin treatment time, AlCl3 addition amount, and precipitation time. The final recommended optimization enrichment procedure involves treating 10 L of filtered water sample with 150 g of Milli-Q water-washed H resin for 30 s, adjusting the pH of the treated sample to 6-7, adding 1.6 g of AlCl3, stirring the mixture, and allowing the solution to settle for 9 h to collect the flocculated precipitate. The precipitate was then extracted with 30 mL of 1 M NaOH +0.05 M DETA extraction solution at 25 °C for 16 h, and the supernatant was separated and lyophilized. The lyophilized sample was redissolved in 1 mL of 1 M NaOH +0.05 M EDTA. This optimized analytical method using 31P NMR effectively identified phosphorus species in highly mineralized natural waters and can be applied to other highly mineralized lake waters globally.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/química , Lagos/química , Hidróxido de Sódio , Sedimentos Geológicos/química , Espectroscopia de Ressonância Magnética/métodos , Poluentes Químicos da Água/análise , Água/análise , China , Monitoramento Ambiental/métodos
5.
Photobiomodul Photomed Laser Surg ; 41(1): 10-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36577047

RESUMO

Background: Patients with osteoporosis (OP) have a high risk of bone fracture. Abnormal bone mesenchymal stem cell (BMSC) differentiation is an essential process of OP development. In recent years, photobiomodulation has been shown to effectively promote BMSC proliferation. However, the mechanism by which photobiomodulation promotes BMSC proliferation is unclear. Long noncoding RNAs (lncRNAs) are essential mediators in multiple biological processes. The lncRNA maternally expressed gene 3 (MEG3) is a novel lncRNA gene and is related to cell proliferation. Studies have indicated that MEG3 serves as a promotor in BMSC proliferation. Objective: To investigate the effects and mechanisms of 800 nm light-emitting diode (LED) photobiomodulation in BMSC proliferation. Materials and methods: The BMSCs collected from mouse tibias and femurs were irradiated by 800 nm LED for 180 sec. CCK-8 assay was used to detect the cell viability. A dual-luciferase reporter assay was used to determine IncRNA MEG3 acted as a miR-217-5p sponge. We used reverse transcription-polymerase chain reaction (RT-PCR) and western blot to detect the mRNA and protein levels of MEG3, miR-217-5p, Notch2, Hes1, Hey2. Results: In the present study, we revealed that photobiomodulation (800 nm LED) could increase the mRNA level of MEG3, and protein levels of Notch2, Hes1, and Hey2. Moreover, we also identified that upregulated MEG3 could act as a miR-217-5p sponge to activate the Notch signaling pathway. Conclusions: The current study revealed the MEG3-related mechanism of photobiomodulation treatment in OP and identified potential gene therapies for OP.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células , RNA Mensageiro , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos
6.
Oxid Med Cell Longev ; 2022: 1534470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225176

RESUMO

Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.


Assuntos
Aterosclerose , Doenças Vasculares , Idoso , Envelhecimento/patologia , Aminoácidos , Biomarcadores/metabolismo , Humanos , Peptídeos
7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(5): 555-559, 2022 Sep 30.
Artigo em Chinês | MEDLINE | ID: mdl-36254486

RESUMO

Electromagnetic compatibility testing of proton therapy system is different from that of traditional products in an anechoic chamber. It has high requirements on the division of sample composition, the understanding of applicable standards, the formulation of operation mode, the selection of test location, and the test of ambient noise. According to the requirements of GB 4824-2019 standard, the test method of radiation emission of proton therapy equipment was developed to provide reference advice for the industry, and the problems encountered in the actual test were studied.


Assuntos
Terapia com Prótons , Fenômenos Eletromagnéticos
8.
ACS Med Chem Lett ; 13(10): 1574-1581, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36262386

RESUMO

Since ibrutinib was approved by the FDA as an effective monotherapy for chronic lymphocytic leukemia (CLL) and multilymphoma, more and more FDA-approved covalent drugs are coming back into the market. On this occasion, the resurgence of interest in covalent drugs calls for more hit discovery techniques. However, the limited numbers of covalent libraries prevent the development of this area. Herein, we report the design of covalent DNA-encoded library (DEL) and its selection method for the discovery of covalent inhibitors for target proteins. These triazine-based covalent DELs yielded potent compounds after covalent selection against target proteins, including Bruton's Tyrosine Kinase (BTK), Janus kinase 3 (JAK3), and peptidyl-prolyl cis/trans isomerase NIMA-interacting-1 (Pin1).

9.
Inorg Chem ; 61(34): 13234-13238, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35975946

RESUMO

Presented here are the synthesis and gas-phase photocatalytic CO2 reduction of an anionic porous Zn-metalated porphyrin metal-organic framework (MOF) induced by an ionic liquid. The desired CO2 affinity and deep conduction band position of the MOF catalyst provide strong kinetic and thermodynamic advantages for photocatalytic CO2 to CH4 conversion with high selectivity (∼70%) in H2O vapor.

10.
Front Mol Biosci ; 9: 828766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495633

RESUMO

Epithelial mesenchymal transition (EMT) is a contributing factor in remodeling events of chronic obstructive pulmonary disease (COPD). Hydrogen sulfide (H2S) has been implicated in the pathogenesis of COPD, but the effect of H2S in regulating EMT and the underlying mechanisms is not clear. In this study, we assessed endoplasmic reticulum (ER) stress markers, EMT markers and associated signal molecules in rat lungs, bronchial epithelial cells, and human peripheral lung tissues to investigate the effect of H2S in regulating EMT and the underlying mechanisms. We found that EMT and ER stress occurred in lung epithelial cells, especially in the bronchial epithelial cells of smokers and COPD patients. In cigarette smoke (CS)-exposed rats, intraperitoneal injection of NaHS significantly alleviated CS-induced lung tissue damage, small airway fibrosis, ER stress, and EMT, while intraperitoneal injection of propargylglycine (cystathionine-gamma-lyase inhibitor) aggravated these effects induced by CS. In the nicotine-exposed 16HBE cells, an appropriate concentration of H2S donor not only inhibited nicotine-induced ER stress, but also inhibited nicotine-induced enhancement of cell migration ability and EMT. ER stress nonspecific inhibitors taurine and 4-phenyl butyric acid also inhibited nicotine-induced enhancement of cell migration ability and EMT. Both H2S and inositol-requiring enzyme 1 (IRE1) activation inhibitor 4µ8C inhibited nicotine-induced activation of IRE1, Smad2/3 and EMT. These results suggest that H2S inhibits CS- or nicotine-induced ER stress and EMT in bronchial epithelial cells and alleviates CS-induced lung tissue damage and small airway fibrosis. The IRE1 signal pathway and Smad2/3 may be responsible for the inhibitory effect of H2S.

11.
JMIR Public Health Surveill ; 8(4): e33633, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442209

RESUMO

BACKGROUND: Lung cancer is a leading cause of death worldwide, and its incidence shows an upward trend. A study of the long-term changes in the premature death rate in lung cancer in a developed region of China has great exploratory significance to further clarify the effectiveness of intervention measures. OBJECTIVE: This study examined long-term changes in premature lung cancer death rates in order to understand the changes in mortality and to design future prevention plans in Pudong New Area (PNA), Shanghai, China. METHODS: Cancer death data were collected from the Mortality Registration System of PNA. We analyzed the crude mortality rate (CMR), age-standardized mortality rate by Segi's world standard population (ASMRW), and years of life lost (YLL) of patients with lung cancer from 1973 to 2019. Temporal trends in the CMR, ASMRW, and YLL rate were calculated by joinpoint regression expressed as an average annual percentage change (AAPC) with the corresponding 95% CI. RESULTS: All registered permanent residents in PNA (80,543,137 person-years) from 1973 to 2019 were enrolled in this study. There were 42,229 deaths from lung cancer. The CMR and ASMRW were 52.43/105 and 27.79/105 person-years, respectively. The YLL due to premature death from lung cancer was 481779.14 years, and the YLL rate was 598.16/105 person-years. The CMR and YLL rate showed significantly increasing trends in men, women, and the total population (P<.001). The CMR of the total population increased by 2.86% (95% CI 2.66-3.07, P<.001) per year during the study period. The YLL rate increased with an AAPC of 2.21% (95% CI 1.92-2.51, P<.001) per year. The contribution rates of increased CMR values caused by demographic factors were more evident than those caused by nondemographic factors. CONCLUSIONS: Lung cancer deaths showed an increasing trend in PNA from 1973 to 2019. Demographic factors, such as the aging population, contributed more to an increased CMR. Our research can help us understand the changes in lung cancer mortality and can be used for similar cities in designing future prevention plans.


Assuntos
Neoplasias Pulmonares , Mortalidade Prematura , Idoso , China/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pesquisa
12.
Cardiovasc Drugs Ther ; 36(2): 201-215, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459922

RESUMO

PURPOSE: HIV infection is consistently associated with an increased risk of atherosclerotic cardiovascular disease, but the underlying mechanisms remain elusive. HIV protein Tat, a transcriptional activator of HIV, has been shown to activate NF-κB signaling and promote inflammation in vitro. However, the atherogenic effects of HIV Tat have not been investigated in vivo. Macrophages are one of the major cell types involved in the initiation and progression of atherosclerosis. We and others have previously revealed the important role of IκB kinase ß (IKKß), a central inflammatory coordinator through activating NF-κB, in the regulation of macrophage functions and atherogenesis. This study investigated the impact of HIV Tat exposure on macrophage functions and atherogenesis. METHODS: To investigate the effects of Tat on macrophage IKKß activation and atherosclerosis development in vivo, myeloid-specific IKKß-deficient LDLR-deficient (IKKßΔMyeLDLR-/-) mice and their control littermates (IKKßF/FLDLR-/-) were exposed to recombinant HIV protein Tat. RESULTS: Exposure to Tat significantly increased atherosclerotic lesion size and plaque vulnerability in IKKßF/FLDLR-/- but not IKKßΔMyeLDLR-/- mice. Deficiency of myeloid IKKß attenuated Tat-elicited macrophage inflammatory responses and atherosclerotic lesional inflammation in IKKßΔMyeLDLR-/- mice. Further, RNAseq analysis demonstrated that HIV protein Tat affects the expression of many atherosclerosis-related genes in vitro in an IKKß-dependent manner. CONCLUSIONS: Our findings reveal atherogenic effects of HIV protein Tat in vivo and demonstrate a pivotal role of myeloid IKKß in Tat-driven atherogenesis.


Assuntos
Aterosclerose , Infecções por HIV , Animais , Aterosclerose/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Lipoproteínas LDL , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de LDL/metabolismo
13.
Lasers Med Sci ; 37(2): 849-856, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33884524

RESUMO

Osteoporosis (OP) is a multifactorial bone disease that occurs worldwide. The treatment of OP is still unsatisfactory. Bone mesenchymal stem cell (BMSC) differentiation is a key process in OP pathogenesis. Low-level laser irradiation (LLLI) has been reported to regulate BMSC proliferation, but the role of circRNAs in the LLLI-based promotion of BMSC proliferation remains unclear. CircRNAs are essential molecular regulators that participate in numerous biological processes and have therapeutic potential. miR-124-3p is an essential microRNA (miRNA), and its expression changes are related to BMSC proliferation ability. In the present study, gain-loss function of experiments demonstrated that circRNA_0001052 could regulate the proliferation of BMSCs by acting as a miR-124-3p sponge through the Wnt4/ß-catenin pathway. The results of this study strongly suggest that circRNA_0001052 plays an essential role in BMSC proliferation in response to LLLI treatment, which is a potential therapeutic manipulation with clinical applications.


Assuntos
Fenômenos Biológicos , Células-Tronco Mesenquimais , MicroRNAs , Proliferação de Células/genética , Células-Tronco Mesenquimais/efeitos da radiação , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , RNA Circular/genética
14.
Exp Ther Med ; 22(4): 1107, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34504561

RESUMO

Autophagy plays an important role in ischemia/reperfusion brain injury, however, the signaling pathways involved in cell autophagy are not fully understood. The present study aimed to investigate the roles and molecular mechanisms of thrombin and Sprouty-related EVH1 domain-2 (SPRED2) on autophagy in hypoxia/reoxygenation (H/R) induced astrocytes. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of thrombin and SPRED2. Western blot analysis was also performed to detect the protein expression levels of Beclin 1, microtubule-associated protein light chain 3 (LC3)-II and LC3-I. The MTT assay was performed to assess cell viability, while ELISA was performed to determine the supernatant levels of interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α. The results demonstrated that the effects of H/R induction on inflammatory factor secretion, oxidative stress, autophagy and cell viability in astrocytes were aggravated by thrombin, the effects of which were reversed following SPRED2 knockdown. Taken together, the results of the present study suggest that thrombin aggravates H/R injury in astrocytes by activating the SPRED2-mediated autophagy.

15.
Chem Commun (Camb) ; 57(68): 8468-8471, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34346420

RESUMO

A high loading of Mn(ii)-metalated porphyrin was achievable in a 2D porphyrin-based Mn-MOF induced by an ionic liquid. The excellent stability, sufficient redox potential, atomically dispersed porphyrin Mn(ii) sites, desired CO2 affinity, high visible light-harvesting and efficient charge separation, endow this MOF with the overall photocatalytic conversion of CO2 to CH4 in gas-solid conditions.

16.
Ann Transl Med ; 9(12): 1022, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34277822

RESUMO

BACKGROUND: To explore the specific prognosis related microRNAs (miRNAs) of glioma. METHODS: The miRNA-Seq data and clinical information of glioma patients were downloaded from the TCGA (510 cases) and GEO (GSE112009, 25 cases) database. LASSO & COX regression was used to develop a miRNA-based model for predicting patient survival in the training set (n=255), to carry out glioma prognostic related miRNAs screening, and to construct a linear risk model based on the expression profiles of seven miRNAs. COX regression analysis was used to determine whether the miRNAs risk model was an independent prognostic factor. RESULTS: Seven survival-related miRNAs (miR-140-5p, miR-145-5p, miR-148a-3p, miR-183-5p, miR-222-3p, miR-223-3p, and miR-374a-5p) were identified in the training set. This showed that the overall survival time of the high-risk group was significantly lower than that of the low-risk group in the training set, prediction set, and validation set (P<0.05). Further analysis revealed that age and Karnofsky score both affected the risk of glioma. By crossing seven potential target genes of microRNAs, 620 effective target genes were obtained and GO analysis showed that these were related to the positive regulation of cell migration, neuron migration, and the response of transforming growth factor, and KEGG analysis showed they were related to the TGF-beta signaling pathway, MAPK signaling, and AGE-RAGE signaling pathway in diabetic complications. CONCLUSIONS: Seven miRNAs which regulate target genes to participate in related signaling pathways and lead to a poor prognosis were identified as biomarkers of glioma.

17.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34324438

RESUMO

Cardiac inflammation and fibrosis contribute significantly to hypertension-related adverse cardiac remodeling. IκB kinase ß (IKK-ß), a central coordinator of inflammation through activation of NF-κB, has been demonstrated as a key molecular link between inflammation and cardiovascular disease. However, the cell-specific contribution of IKK-ß signaling toward adverse cardiac remodeling remains elusive. Cardiac fibroblasts are one of the most populous nonmyocyte cell types in the heart that play a key role in mediating cardiac fibrosis and remodeling. To investigate the function of fibroblast IKK-ß, we generated inducible fibroblast-specific IKK-ß-deficient mice. Here, we report an important role of IKK-ß in the regulation of fibroblast functions and cardiac remodeling. Fibroblast-specific IKK-ß-deficient male mice were protected from angiotensin II-induced cardiac hypertrophy, fibrosis, and macrophage infiltration. Ablation of fibroblast IKK-ß inhibited angiotensin II-stimulated fibroblast proinflammatory and profibrogenic responses, leading to ameliorated cardiac remodeling and improved cardiac function in IKK-ß-deficient mice. Findings from this study establish fibroblast IKK-ß as a key factor regulating cardiac fibrosis and function in hypertension-related cardiac remodeling.


Assuntos
Angiotensina II/farmacologia , Cardiomegalia/genética , Fibroblastos/fisiologia , Quinase I-kappa B/genética , Miocárdio/patologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular , Proliferação de Células , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibrose , Técnicas de Silenciamento de Genes , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/induzido quimicamente , Inflamação/metabolismo , Macrófagos , Masculino , Camundongos , Miocardite/genética , Miocardite/metabolismo , Tamanho do Órgão , Fatores de Proteção , Transdução de Sinais , Remodelação Ventricular/genética
18.
Inflammation ; 44(5): 1982-1992, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34021838

RESUMO

Although natural killer T cells (NKT cells) are altered in obese asthmatic mice, their function remains completely unclear. To further explore the potential mechanism of NKT cells in airway inflammation of obesity-associated asthma, we examined the effects of α-galactosylceramide (KRN7000) on airway inflammation in obese asthmatic mice. Male C57BL/6J mice were divided into five groups: (1) control; (2) asthma; (3) A + KRN, asthma with KRN7000; (4) obese asthma; and (5) OA + KRN, obese asthma with KRN7000. Cytometric bead array (CBA) was used to detect interleukin-4 (IL-4), IL-10, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in the serum. Flow cytometry was used to detect NKT cells and CD69+ NKT cells. Airway inflammation was observed in pathological sections, and calmodulin (CaM) expression was observed by immunohistochemistry in lung tissues. Airway inflammation in the obese asthma group was more severe than that of the asthma group. Airway inflammation of the OA + KRN group was reduced more than that of the A + KRN group. CD69+ NKT cells were only significantly reduced in the OA + KRN group. The levels of serum IFN-γ and TNF-α increased more in the OA + KRN group than in the A + KRN group. CaM is widely expressed in the cytoplasm of the lung tissues and was sharply decreased in the OA + KRN group. KRN7000 can significantly reduce airway inflammation in obesity-associated asthma by regulating NKT cell cytokine secretion and intracellular calcium. These results may contribute to the development of novel therapeutic approaches.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Asma/metabolismo , Galactosilceramidas/uso terapêutico , Mediadores da Inflamação/metabolismo , Células Matadoras Naturais/metabolismo , Obesidade/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Galactosilceramidas/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Ovalbumina/toxicidade
19.
Cell Death Dis ; 12(5): 436, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934111

RESUMO

Atherosclerotic plaque vulnerability and rupture increase the risk of acute coronary syndromes. Advanced lesion macrophage apoptosis plays important role in the rupture of atherosclerotic plaque, and endoplasmic reticulum stress (ERS) has been proved to be a key mechanism of macrophage apoptosis. Intermedin (IMD) is a regulator of ERS. Here, we investigated whether IMD enhances atherosclerotic plaque stability by inhibiting ERS-CHOP-mediated apoptosis and subsequent inflammasome in macrophages. We studied the effects of IMD on features of plaque vulnerability in hyperlipemia apolipoprotein E-deficient (ApoE-/-) mice. Six-week IMD1-53 infusion significantly reduced atherosclerotic lesion size. Of note, IMD1-53 lowered lesion macrophage content and necrotic core size and increased fibrous cap thickness and vascular smooth muscle cells (VSMCs) content thus reducing overall plaque vulnerability. Immunohistochemical analysis indicated that IMD1-53 administration prevented ERS activation in aortic lesions of ApoE-/- mice, which was further confirmed in oxidized low-density lipoproteins (ox-LDL) induced macrophages. Similar to IMD, taurine (Tau), a non-selective ERS inhibitor significantly reduced atherosclerotic lesion size and plaque vulnerability. Moreover, C/EBP-homologous protein (CHOP), a pro-apoptosis transcription factor involved in ERS, was significantly increased in advanced lesion macrophages, and deficiency of CHOP stabilized atherosclerotic plaques in AopE-/- mice. IMD1-53 decreased CHOP level and apoptosis in vivo and in macrophages treated with ox-LDL. In addition, IMD1-53 infusion ameliorated NLRP3 inflammasome and subsequent proinflammatory cytokines in vivo and in vitro. IMD may attenuate the progression of atherosclerotic lesions and plaque vulnerability by inhibiting ERS-CHOP-mediated macrophage apoptosis, and subsequent NLRP3 triggered inflammation. The inhibitory effect of IMD on ERS-induced macrophages apoptosis was probably mediated by blocking CHOP activation.


Assuntos
Inflamassomos/metabolismo , Macrófagos/metabolismo , Neuropeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Placa Aterosclerótica/metabolismo , Animais , Apoptose/fisiologia , Humanos , Camundongos , Placa Aterosclerótica/patologia
20.
Biochem Biophys Res Commun ; 556: 72-78, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33839417

RESUMO

Even though long non-coding RNA (lncRNA) MEG8 plays vital roles in carcinogenesis of malignances, its roles and mechanisms in hemangioma remain unknown. Therefore, we evaluate the oncogenic roles of MEG8 in hemangioma. Small interfering RNA (siRNA)-mediated depletion of MEG8 inhibited the proliferation and increased MDA level in human hemangioma endothelial cells (HemECs). The inhibitors of ferroptosis (ferrostatin-1 and liproxstatin-1) abolished the MEG8 silence induced cell viability loss. Knockdown of MEG8 increased the miR-497-5p expression and reduced the mRNA and protein levels of NOTCH2. Using a dual-luciferase assay, we confirmed the binding between MEG8 and miR-497-5p, and between the miR-497-5p and 3'UTR of NOTCH2. We further found that silencing MEG8 significantly decreased the expressions of SLC7A11 and GPX4 both in mRNA and protein level and had no effect on the level of AIFM2. Importantly, blocking miR-497-5p abrogated the effects of MEG8 loss on cell viability, MDA level and expression levels of NOTCH2, SLC7A11 and GPX4 in HemECs. Taken together, our results suggested that knockdown of long non-coding RNA MEG8 inhibited the proliferation and induced the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis.


Assuntos
Células Endoteliais/metabolismo , Ferroptose/genética , Inativação Gênica , Hemangioma/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Receptor Notch2/genética , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cicloexilaminas/farmacologia , Regulação para Baixo , Células Endoteliais/patologia , Ferroptose/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fenilenodiaminas/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Quinoxalinas/farmacologia , RNA Longo não Codificante/antagonistas & inibidores , RNA Interferente Pequeno/genética , Receptor Notch2/biossíntese , Receptor Notch2/metabolismo , Compostos de Espiro/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA