Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884481

RESUMO

Phytophthora parasitica is a highly destructive oomycete plant pathogen that is capable of infecting a wide range of hosts including many agricultural cash crops, fruit trees, and ornamental garden plants. One of the most important diseases caused by P. parasitica worldwide is black shank of tobacco. Rapid, sensitive, and specific pathogen detection is crucial for early rapid diagnosis which can facilitate effective disease management. In this study, we used a genomics approach to identify repeated sequences in the genome of P. parasitica by genome sequence alignment, and identified a 203 bp P. parasitica-specific sequence, PpM34, that is present in 31-60 copies in the genome. The P. parasitica genome-specificity of PpM34 was supported by PCR amplification of 24 genetically diverse strains of P. parasitica, 32 strains representing twelve other Phytophthora species, one Pythium specie, six fungal species and three bacterial species, all of which are plant pathogens. Our PCR and real-time PCR assays showed that the PpM34 sequence was highly sensitive in specifically detecting P. parasitica. Finally, we developed a PpM34-based high-efficiency Recombinase Polymerase Amplification (RPA) assay, which allowed us to specifically detect as little as 1 pg of P. parasitica total DNA from both pure cultures and infected Nicotiana benthamiana at 39°C using a fluorometric thermal cycler. The sensitivity, specificity, convenience and rapidity of this assay represents a major improvement for early diagnosis of P. parasitica infection.

2.
Plant J ; 111(2): 360-373, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506331

RESUMO

Oomycetes are diploid eukaryotic microorganisms that seriously threaten sustainable crop production. MicroRNAs (miRNAs) and corresponding natural antisense transcripts (NATs) are important regulators of multiple biological processes. However, little is known about their roles in plant immunity against oomycete pathogens. In this study, we report the identification and functional characterization of miR398b and its cis-NAT, the core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase gene (AtC2GnT), in plant immunity. Gain- and loss-of-function assays revealed that miR398b mediates Arabidopsis thaliana susceptibility to Phytophthora parasitica by targeting Cu/Zn-Superoxidase Dismutase1 (CSD1) and CSD2, leading to suppressed expression of CSD1 and CSD2 and decreased plant disease resistance. We further showed that AtC2GnT transcripts could inhibit the miR398b-CSDs module via inhibition of pri-miR398b expression, leading to elevated plant resistance to P. parasitica. Furthermore, quantitative reverse transcription PCR, RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE), and transient expression assays indicated that miR398b suppresses the expression of AtC2GnT. We generated AtC2GnT-silenced A. thaliana plants by CRISPR/Cas9 or RNA interference methods, and the Nicotiana benthamiana NbC2GnT-silenced plants by virus-induced gene silencing. Pathogenicity assays showed that the C2GnT-silenced plants were more susceptible, while AtC2GnT-overexpressing plants exhibited elevated resistance to P. parasitica. AtC2GnT encodes a Golgi-localized protein, and transient expression of AtC2GnT enhanced N. benthamiana resistance to Phytophthora pathogens. Taken together, our results revealed a positive role of AtC2GnT and a negative regulatory loop formed by miR398b and AtC2GnT in regulating plant resistance to P. parasitica.


Assuntos
Arabidopsis , Phytophthora , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Doença/genética , Retroalimentação , Regulação da Expressão Gênica de Plantas , Phytophthora/fisiologia , Doenças das Plantas/genética
3.
J Integr Plant Biol ; 63(5): 961-976, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33205861

RESUMO

In plants, recognition of small secreted peptides, such as damage/danger-associated molecular patterns (DAMPs), regulates diverse processes, including stress and immune responses. Here, we identified an SGPS (Ser-Gly-Pro-Ser) motif-containing peptide, Nicotiana tabacum NtPROPPI, and its two homologs in Nicotiana benthamiana, NbPROPPI1 and NbPROPPI2. Phytophthora parasitica infection and salicylic acid (SA) treatment induced NbPROPPI1/2 expression. Moreover, SignalP predicted that the 89-amino acid NtPROPPI includes a 24-amino acid N-terminal signal peptide and NbPROPPI1/2-GFP fusion proteins were mainly localized to the periplasm. Transient expression of NbPROPPI1/2 inhibited P. parasitica colonization, and NbPROPPI1/2 knockdown rendered plants more susceptible to P. parasitica. An eight-amino-acid segment in the NbPROPPI1 C-terminus was essential for its immune function and a synthetic 20-residue peptide, NbPPI1, derived from the C-terminus of NbPROPPI1 provoked significant immune responses in N. benthamiana. These responses led to enhanced accumulation of reactive oxygen species, activation of mitogen-activated protein kinases, and up-regulation of the defense genes Flg22-induced receptor-like kinase (FRK) and WRKY DNA-binding protein 33 (WRKY33). The NbPPI1-induced defense responses require Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1). These results suggest that NbPPI1 functions as a DAMP in N. benthamiana; this novel DAMP provides a potentially useful target for improving plant resistance to Pytophthora pathogens.


Assuntos
Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética
4.
Mol Plant Pathol ; 21(9): 1179-1193, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32725756

RESUMO

Phytophthora species are destructive plant pathogens that cause significant crop losses worldwide. To understand plant susceptibility to oomycete pathogens and to explore novel disease resistance strategies, we employed the Arabidopsis thaliana-Phytophthora parasitica model pathosystem and screened for A. thaliana T-DNA insertion mutant lines resistant to P. parasitica. This led to the identification of the resistant mutant 267-31, which carries two T-DNA insertion sites in the promoter region of the ethylene-responsive factor 19 gene (ERF019). Quantitative reverse transcription PCR (RT-qPCR) assays showed that the expression of ERF019 was induced during P. parasitica infection in the wild type, which was suppressed in the 267-31 mutant. Additional erf019 mutants were generated using CRISPR/Cas9 technology and were confirmed to have increased resistance to P. parasitica. In contrast, ERF019 overexpression lines were more susceptible. Transient overexpression assays in Nicotiana benthamiana showed that the nuclear localization of ERF019 is crucial for its susceptible function. RT-qPCR analyses showed that the expression of marker genes for multiple defence pathways was significantly up-regulated in the mutant compared with the wild type during infection. Flg22-induced hydrogen peroxide accumulation and reactive oxygen species burst were impaired in ERF019 overexpression lines, and flg22-induced MAPK activation was enhanced in erf019 mutants. Moreover, transient overexpression of ERF019 strongly suppressed INF-triggered cell death in N. benthamiana. These results reveal the importance of ERF019 in mediating plant susceptibility to P. parasitica through suppression of pathogen-associated molecular pattern-triggered immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Fatores de Transcrição/metabolismo , Arabidopsis/imunologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Resistência à Doença , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/parasitologia , Imunidade Vegetal , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA