Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
iScience ; 27(6): 110014, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947512

RESUMO

The NAD+-dependent deacetylase SIRT7 is a pivotal regulator of DNA damage response (DDR) and a promising drug target for developing cancer therapeutics. However, limited progress has been made in SIRT7 modulator discovery. Here, we applied peptide-based deacetylase platforms for SIRT7 enzymatic evaluation and successfully identified a potent SIRT7 inhibitor YZL-51N. We initially isolated bioactive YZL-51N from cockroach (Periplaneta americana) extracts and then developed the de novo synthesis of this compound. Further investigation revealed that YZL-51N impaired SIRT7 enzymatic activities through occupation of the NAD+ binding pocket. YZL-51N attenuated DNA damage repair induced by ionizing radiation (IR) in colorectal cancer cells and exhibited a synergistic anticancer effect when used in combination with etoposide. Overall, our study not only identified YZL-51N as a selective SIRT7 inhibitor from insect resources, but also confirmed its potential use in combined chemo-radiotherapy by interfering in the DNA damage repair process.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675475

RESUMO

The natural flavonoid compound chrysin has promising anti-tumor effects. In this study, we aimed to investigate the mechanism by which chrysin inhibits the growth of non-small cell lung cancer (NSCLC). Through in vitro cell culture and animal models, we explored the impact of chrysin on the growth of NSCLC cells and the pro-cancer effects of tumor-associated macrophages (TAMs) and their mechanisms. We observed that M2-TAMs significantly promoted the growth and migration of NSCLC cells, while also markedly activating the autophagy level of these cells. Chrysin displayed a significant inhibitory effect on the growth of NSCLC cells, and it could also suppress the pro-cancer effects of M2-TAMs and inhibit their mediated autophagy. Furthermore, combining network pharmacology, we found that chrysin inhibited TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 signaling pathway, rather than the classical mTOR/ULK1 signaling pathway. Our study reveals a novel mechanism by which chrysin inhibits TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 pathway, thereby suppressing NSCLC growth. This discovery not only provides new therapeutic strategies for NSCLC but also opens up new avenues for further research on chrysin.

3.
Cell Rep ; 43(2): 113779, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358891

RESUMO

R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities.


Assuntos
Adenina/análogos & derivados , Estruturas R-Loop , RNA , Ribonuclease H , Humanos , Instabilidade Genômica , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Metiltransferases/genética
4.
Nat Struct Mol Biol ; 30(11): 1719-1734, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735618

RESUMO

Chromatin relaxation is a prerequisite for the DNA repair machinery to access double-strand breaks (DSBs). Local histones around the DSBs then undergo prompt changes in acetylation status, but how the large demands of acetyl-CoA are met is unclear. Here, we report that pyruvate dehydrogenase 1α (PDHE1α) catalyzes pyruvate metabolism to rapidly provide acetyl-CoA in response to DNA damage. We show that PDHE1α is quickly recruited to chromatin in a polyADP-ribosylation-dependent manner, which drives acetyl-CoA generation to support local chromatin acetylation around DSBs. This process increases the formation of relaxed chromatin to facilitate repair-factor loading, genome stability and cancer cell resistance to DNA-damaging treatments in vitro and in vivo. Indeed, we demonstrate that blocking polyADP-ribosylation-based PDHE1α chromatin recruitment attenuates chromatin relaxation and DSB repair efficiency, resulting in genome instability and restored radiosensitivity. These findings support a mechanism in which chromatin-associated PDHE1α locally generates acetyl-CoA to remodel the chromatin environment adjacent to DSBs and promote their repair.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Acetilcoenzima A/metabolismo , Acetilação , Reparo do DNA , Dano ao DNA , Piruvatos
5.
Nucleic Acids Res ; 51(17): 9166-9182, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37503842

RESUMO

Histone deacetylase 6 (HDAC6) mediates DNA damage signaling by regulating the mismatch repair and nucleotide excision repair pathways. Whether HDAC6 also mediates DNA double-strand break (DSB) repair is unclear. Here, we report that HDAC6 negatively regulates DSB repair in an enzyme activity-independent manner. In unstressed cells, HDAC6 interacts with H2A/H2A.X to prevent its interaction with the E3 ligase RNF168. Upon sensing DSBs, RNF168 rapidly ubiquitinates HDAC6 at lysine 116, leading to HDAC6 proteasomal degradation and a restored interaction between RNF168 and H2A/H2A.X. H2A/H2A.X is ubiquitinated by RNF168, precipitating the recruitment of DSB repair factors (including 53BP1 and BRCA1) to chromatin and subsequent DNA repair. These findings reveal novel regulatory machinery based on an HDAC6-RNF168 axis that regulates the H2A/H2A.X ubiquitination status. Interfering with this axis might be leveraged to disrupt a key mechanism of cancer cell resistance to genotoxic damage and form a potential therapeutic strategy for cancer.


Assuntos
Reparo do DNA , Humanos , Linhagem Celular Tumoral , Dano ao DNA , Desacetilase 6 de Histona/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Open Med (Wars) ; 18(1): 20230630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398901

RESUMO

The aim of this study was to verify the effects of circular RNA nuclear factor of activated T-cells, cytoplasmic 3 (circNFATC3), in oral squamous cell carcinoma (OSCC) development. The levels of circNFATC3, microRNA-520h (miR-520h), and lactate dehydrogenase A (LDHA) were measured by qRT-PCR and western blot analysis. The cellular functions were assessed by using commercial kits, MTT assay, EdU assay, flow cytometry analysis, and transwell assay. The interactions between miR-520h and circNFATC3 or LDHA were confirmed by dual-luciferase reporter assay. Finally, the mice test was enforced to evaluate the character of circNFATC3. We observed that the contents of circNFATC3 and LDHA were upregulated and miR-520h levels were downregulated in OSCC tissues compared with those in paracancerous tissues. For functional analysis, circNFATC3 knockdown repressed the cell glycolysis metabolism, cell proliferation, migration, and invasion, although it improved cell apoptosis in OSCC cells. LDHA could regulate the development of OSCC. circNFATC3 acted as a miR-520h sponge to modulate LDHA expression. In addition, the absence of circNFATC3 subdued tumor growth in vivo. In conclusion, circNFATC3 promoted the advancement of OSCC by adjusting the miR-520h/LDHA axis.

7.
J Invest Dermatol ; 143(12): 2436-2446.e13, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37414246

RESUMO

Keratin 17 (K17) is a cytoskeletal protein that is part of the intermediate filaments in epidermal keratinocytes. In K17-/- mice, ionizing radiation induced more severe hair follicle damage, whereas the epidermal inflammatory response was attenuated compared with that in wild-type mice. Both p53 and K17 have a major impact on global gene expression because over 70% of the differentially expressed genes in the skin of wild-type mice showed no expression change in p53-/- or K17-/- skin after ionizing radiation. K17 does not interfere with the dynamics of p53 activation; rather, global p53 binding in the genome is altered in K17-/- mice. The absence of K17 leads to aberrant cell cycle progression and mitotic catastrophe in epidermal keratinocytes, which is due to nuclear retention, thus reducing the degradation of B-Myb, a key regulator of the G2/M cell cycle transition. These results expand our understanding of the role of K17 in regulating global gene expression and ionizing radiation-induced skin damage.


Assuntos
Queratina-17 , Radiodermite , Animais , Camundongos , Ciclo Celular/genética , Expressão Gênica , Células M , Radiação Ionizante , Proteína Supressora de Tumor p53
8.
Oral Dis ; 29(5): 1979-1990, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35403775

RESUMO

BACKGROUND: Accumulating articles have suggested the important regulatory roles of circular RNAs in human cancers, including oral squamous cell carcinoma (OSCC). However, the role of circ_0001971 in OSCC progression remains to be determined. METHODS: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assays were conducted to analyze cell proliferation ability. Cell migration and invasion abilities were assessed by transwell assays. Dual-luciferase reporter assay was conducted to confirm the target relation between miR-107 and circ_0001971 or FZD4. Xenograft tumor model was established to analyze the biological role of circ_0001971 in regulating tumor growth in vivo. RESULTS: Circ_0001971 was markedly up-regulated in OSCC tissues and cell lines. Circ_0001971 knockdown inhibited the growth of xenograft tumors in vivo. miR-107 was confirmed as a direct target of circ_0001971, and circ_0001971 depletion-mediated anti-tumor effects in OSCC cells could be largely alleviated by silencing miR-107. miR-107 directly targeted the 3' untranslated region of FZD4, and FZD4 overexpression largely reversed the anti-tumor effects of circ_0001971 in OSCC cells. Circ_0001971 could positively regulate FZD4 expression by targeting miR-107 in OSCC cells. CONCLUSION: Circ_0001971 promoted the proliferation, migration, and glycolysis of OSCC cells through mediating miR-107/FZD4 axis. Circ_0001971 might be a new effective target for OSCC treatment in future.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Animais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/genética , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , MicroRNAs/genética , Linhagem Celular Tumoral , Receptores Frizzled/genética
9.
Pharm Biol ; 60(1): 1819-1838, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36124995

RESUMO

CONTEXT: Shen-Shi-Jiang-Zhuo formula (SSJZF) exhibits a definite curative effect in the clinical treatment of non-alcoholic fatty liver disease (NAFLD). OBJECTIVE: To explore the therapeutic effect and mechanism of SSJZF on NAFLD. MATERIALS AND METHODS: Sprague Dawley rats were randomly divided into control, NAFLD, positive drug (12 mg/kg/day), SSJZF high-dose (200 mg/kg/day), SSJZF middle-dose (100 mg/kg/day), and SSJZF low-dose (50 mg/kg/day) groups. After daily intragastric administration of NAFLD rats for 8 weeks, lipid metabolism and hepatic fibrosis were evaluated by biochemical indices and histopathology. Then we uncovered the main active compounds and mechanism of SSJZF against NAFLD by integrating RNA-sequencing and network pharmacology, and PI3K/AKT pathway activity was verified by western blot. RESULTS: High dose SSJZF had the best inhibitory effect on hepatic lipid accumulation and fibrosis in rats with NAFLD, which significantly down-regulated total triglycerides (58%), cholesterol (62%), aspartate aminotransferase (57%), alanine aminotransferase (41%) andγ-glutamyl transpeptidase (36%), as well as the expression of ACC (5.3-fold), FAS (12.1-fold), SREBP1C (2.3-fold), and CD36 (4.4-fold), and significantly reduced collagen deposition (67%). Then we identified 23 compounds of SSJZF that acted on 25 key therapeutic targets of NAFLD by integrating RNA-sequencing and network pharmacology. Finally, we also confirmed that high dose SSJZF increased p-PI3K/PI3K (1.6-fold) and p-AKT/AKT (1.6-fold) in NAFLD rats. DISCUSSION AND CONCLUSION: We found for first time that SSJZF improved NAFLD in rats by activating the PI3K/Akt pathway. These findings provide scientific support for SSJZF in the clinical treatment of NAFLD and contribute to the development of new NAFLD drugs.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Alanina Transaminase , Animais , Aspartato Aminotransferases , Colesterol , Dieta Hiperlipídica , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/uso terapêutico , Ratos , Ratos Sprague-Dawley , Triglicerídeos , gama-Glutamiltransferase/uso terapêutico
10.
Oncogene ; 40(49): 6680-6691, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34645979

RESUMO

Colorectal carcinoma (CRC) is the second most deadly cancer worldwide. Therapies that take advantage of DNA repair defects have been explored in various tumors but not yet systematically in CRC. Here, we found that Diphosphoinositol Pentakisphosphate Kinase 2 (PPIP5K2), an inositol pyrophosphate kinase, was highly expressed in CRC and associated with a poor prognosis of CRC patients. In vitro and in vivo functional studies demonstrated that PPIP5K2 could promote the proliferation and migration ability of CRC cells independent of its inositol pyrophosphate kinase activity. Mechanically, S1006 dephosphorylation of PPIP5K2 could accelerate its dissociation with 14-3-3 in the cytoplasm, resulting in more nuclear distribution. Moreover, DNA damage treatments such as doxorubicin (DOX) or irradiation (IR) could induce nuclear translocation of PPIP5K2, which subsequently promoted homologous recombination (HR) repair by binding and recruiting RPA70 to the DNA damage site as a novel scaffold protein. Importantly, we verified that S1006 dephosphorylation of PPIP5K2 could significantly enhance the DNA repair ability of CRC cells through a series of DNA repair phenotype assays. In conclusion, PPIP5K2 is critical for enhancing the survival of CRC cells via facilitating DNA HR repair. Our findings revealed an unrecognized biological function and mechanism model of PPIP5K2 dependent on S1006 phosphorylation and provided a potential therapeutic target for CRC patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Dano ao DNA , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Ecotoxicol Environ Saf ; 227: 112909, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34673414

RESUMO

Wilforine, a compound of sesquiterpene alkaloids isolated from Tripterygium wilfordii, exhibits excellent insecticidal activity against Mythimna separata. In order to clarify the action mechanism of wilforine, the plasma membrane calcium transporting ATPase (PMCA) and inositol 1,4,5-trisphosphate receptor (IP3R) from M. separata were studied. Results showed that the open reading frame of MsIP3R and MsPMCA were 8118 bp and 3438 bp in length, as well as encoded 2706 and 1146 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis revealed that the MsIP3R and MsPMCA had high homology with the IP3R and PMCA of other insects, but had low similarity with those of mammals, which means the IP3R and PMCA have potential to be the novel targets of insecticides with high selectivity between mammals and insects. Both MsIP3R and MsPMCA genes existed throughout the life cycle of M. separata, and were all predominantly expressed in somatic muscle of fifth-instar larvae and the adults. The susceptibilities of PMCA-silenced M. separata to wilforine were significantly lower than that of the normal M. separata, which illustrates that PMCA could be one of the targets of wilforine. However, the susceptibilities of IP3R-silenced M. separata to wilforine did not change significantly compared with the susceptibilities of normal M. separata, which shows that wilforine may not interact with the IP3R protein. These findings provide clues for elucidating the insecticidal mechanism of wilforine.


Assuntos
Inseticidas , Mariposas , Animais , Inativação Gênica , Inositol , Receptores de Inositol 1,4,5-Trifosfato/genética , Inseticidas/toxicidade , Lactonas , Larva/genética , Mariposas/genética , Filogenia , ATPases Transportadoras de Cálcio da Membrana Plasmática , Piridinas , Interferência de RNA
12.
DNA Repair (Amst) ; 107: 103206, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34411909

RESUMO

Cells protect the integrity of the genome against DNA double-strand breaks through several well-characterized mechanisms including nonhomologous end-joining repair, homologous recombination repair, microhomology-mediated end-joining and single-strand annealing. However, aberrant DNA damage responses (DDRs) lead to genome instability and tumorigenesis. Clarification of the mechanisms underlying the DDR following lethal damage will facilitate the identification of therapeutic targets for cancer. Histones are small proteins that play a major role in condensing DNA into chromatin and regulating gene function. Histone modifications commonly occur in several residues including lysine, arginine, serine, threonine and tyrosine, which can be acetylated, methylated, ubiquitinated and phosphorylated. Of these, lysine modifications have been extensively explored during DDRs. Here, we focus on discussing the roles of lysine modifying enzymes involved in acetylation, methylation, and ubiquitination during the DDR. We provide a comprehensive understanding of the basis of potential epigenetic therapies driven by histone lysine modifications.


Assuntos
Histonas
13.
Free Radic Biol Med ; 160: 403-417, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32649985

RESUMO

Cancer therapeutics produce reactive oxygen species (ROS) that damage the cancer genome and lead to cell death. However, cancer cells can resist ROS-induced cytotoxicity and survive. We show that nuclear-localized uracil-DNA N-glycosylase isoform 2 (UNG2) has a critical role in preventing ROS-induced DNA damage and enabling cancer-cell resistance. Under physiological conditions, UNG2 is targeted for rapid degradation via an interaction with the E3 ligase UHRF1. In response to ROS, however, UNG2 protein in cancer cells exhibits a remarkably extended half-life. Upon ROS exposure, UNG2 is deacetylated at lysine 78 by histone deacetylases, which prevents the UNG2-UHRF1 interaction. Accumulated UNG2 protein can thus excise the base damaged by ROS and enable the cell to survive these otherwise toxic conditions. Consequently, combining HDAC inhibitors (to permit UNG2 degradation) with genotoxic agents (to produce cytotoxic cellular levels of ROS) leads to a robust synergistic killing effect in cancer cells in vitro. Altogether, these data support the application of a novel approach to cancer treatment based on promoting UNG2 degradation by altering its acetylation status using an HDAC inhibitor.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Núcleo Celular , Dano ao DNA , Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Uracila-DNA Glicosidase/genética
14.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630273

RESUMO

Jasmonic acid (JA) plays a crucial role in various biological processes including development, signal transduction and stress response. Allene oxide synthase (AOS) catalyzing (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT) to an unstable allene oxide is involved in the first step of JA biosynthesis. Here, we isolated the PtAOS1 gene and its promoter from trifoliate orange (Poncirus trifoliata). PtAOS1 contains a putative chloroplast targeting sequence in N-terminal and shows relative to pistachio (Pistacia vera) AOS. A number of stress-, light- and hormone-related cis-elements were found in the PtAOS1 promoter which may be responsible for the up-regulation of PtAOS1 under drought and JA treatments. Transient expression in tobacco (Nicotiana benthamiana) demonstrated that the P-532 (-532 to +1) fragment conferring drive activity was a core region in the PtAOS1 promoter. Using yeast one-hybrid, three novel proteins, PtDUF886, PtDUF1685 and PtRAP2.4, binding to P-532 were identified. The dual luciferase assay in tobacco illustrated that all three transcription factors could enhance PtAOS1 promoter activity. Genes PtDUF1685 and PtRAP2.4 shared an expression pattern which was induced significantly by drought stress. These findings should be available evidence for trifoliate orange responding to drought through JA modulation.


Assuntos
Oxirredutases Intramoleculares/genética , Poncirus/genética , Estresse Fisiológico/genética , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Oxirredutases Intramoleculares/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Poncirus/metabolismo , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
15.
Oncogene ; 39(24): 4650-4665, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32404984

RESUMO

Sirtuin 7 (SIRT7), an NAD+-dependent deacetylase, plays vital roles in energy sensing, but the underlying mechanisms of action remain less clear. Here, we report that SIRT7 is required for p53-dependent cell-cycle arrest during glucose deprivation. We show that SIRT7 directly interacts with p300/CBP-associated factor (PCAF) and the affinity for this interaction increases during glucose deprivation. Upon binding, SIRT7 deacetylates PCAF at lysine 720 (K720), which augments PCAF binding to murine double minute (MDM2), the p53 E3 ubiquitin ligase, leading to accelerated MDM2 degradation. This effect results in upregulated expression of the cell-cycle inhibitor, p21Waf1/Cip1, which further leads to cell-cycle arrest and decreased cell viability. These data highlight the importance of the SIRT7-PCAF interaction in regulating p53 activity and cell-cycle progression during conditions of glucose deprivation. This axis may represent a new avenue to design effective therapeutics based on tumor starvation.


Assuntos
Pontos de Checagem do Ciclo Celular , Neoplasias/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sirtuínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Glucose/genética , Glucose/metabolismo , Células HCT116 , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Sirtuínas/genética , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição de p300-CBP/genética
16.
Theranostics ; 10(5): 2358-2373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104508

RESUMO

Invadopodia formation is a key driver of cancer metastasis. The noncanonical IkB-related kinase IKKε has been implicated in cancer metastasis, but its roles in invadopodia formation and colorectal cancer (CRC) metastasis are unclear. Methods: Immunofluorescence, gelatin-degradation assay, wound healing assay and transwell invasion assay were used to determine the influence of IKKε over-expression, knockdown and pharmacological inhibition on invadopodia formation and the migratory and invasive capacity of CRC cells in vitro. Effects of IKKε knockdown or pharmacological inhibition on CRC metastasis were examined in mice. Immunohistochemistry staining was used to detect expression levels of IKKε in CRC patient tissues, and its association with prognosis in CRC patients was also analyzed. Immunoprecipitation, western blotting and in vitro kinase assay were constructed to investigate the molecular mechanisms. Results: IKKε co-localizes with F-actin and the invadopodia marker Tks5 at the gelatin-degrading sites of CRC cells. Genetic over-expression/knockdown or pharmacological inhibition of IKKε altered invadopodia formation and the migratory and invasive capacity of CRC cells in vitro. In vivo, knockdown or pharmacological inhibition of IKKε significantly suppressed metastasis of CRC cells in mice. IKKε knockdown also inhibited invadopodia formation in vivo. Clinical investigation of tumor specimens from 191 patients with CRC revealed that high IKKε expression correlates with metastasis and poor prognosis of CRC. Mechanistically, IKKε directly binds to and phosphorylates kindlin-2 at serine 159; this effect mediates the IKKε-induced invadopodia formation and promotion of CRC metastasis. Conclusions: We identify IKKε as a novel regulator of invadopodia formation and a unique mechanism by which IKKε promotes the metastasis of CRC. Our study suggests that IKKε is a potential target to suppress CRC metastasis.


Assuntos
Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/metabolismo , Quinase I-kappa B/metabolismo , Proteínas Musculares/metabolismo , Podossomos/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas do Citoesqueleto/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Quinase I-kappa B/genética , Masculino , Camundongos , Proteínas Musculares/genética , Metástase Neoplásica , Proteínas de Ligação a Fosfato/metabolismo , Fosforilação , Podossomos/genética , RNA Interferente Pequeno/genética
17.
Theranostics ; 10(4): 1758-1776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042335

RESUMO

Background and Aim: DOT1L regulates various genes involved in cancer onset and progression by catalyzing H3K79 methylation, but how DOT1L activity itself is regulated is unclear. Here, we aimed to identify specific DOT1L post-translational modifications that might regulate DOT1L activity and thus impact on colorectal cancer (CRC) progression. Methods: We conducted affinity purification and mass spectrometry to explore DOT1L post-translational modifications. We then established transwell migration and invasion assays to specifically investigate the role of DOT1L(K358) acetylation on CRC cellular behavior in vitro and a bioluminescence imaging approach to determine the role of DOT1L(K358) acetylation in CRC metastasis in vivo. We performed chromatin immunoprecipitation to identify DOT1L acetylation-controlled target genes. Finally, we used immunohistochemical staining of human tissue arrays to examine the relevance of DOT1L(K358) acetylation in CRC progression and metastasis and the correlation between DOT1L acetylation and CBP. Results: We found that CBP mediates DOT1L K358 acetylation in human colon cancer cells and positively correlates with CRC stages. Mechanistically, DOT1L acetylation confers DOT1L stability by preventing the binding of RNF8 to DOT1L and subsequent proteasomal degradation, but does not affect its enzyme activity. Once stabilized, DOT1L can catalyze the H3K79 methylation of genes involved in epithelial-mesenchymal transition, including SNAIL and ZEB1. An acetylation mimic DOT1L mutant (Q358) could induce a cancer-like phenotype in vitro, characterized by metastasis and invasion. Finally, DOT1L(K358) acetylation correlated with CRC progression and a poor survival rate as well as with high CBP expression. Conclusions: DOT1L acetylation by CBP drives CRC progression and metastasis. Targeting DOT1L deacetylation signaling is a potential therapeutic strategy for DOT1L-driven cancers.


Assuntos
Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/genética , Histona-Lisina N-Metiltransferase/metabolismo , Metástase Neoplásica/diagnóstico por imagem , Acetilação , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/secundário , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Humanos , Neoplasias Pulmonares/patologia , Metilação , Camundongos , Camundongos Nus , Fragmentos de Peptídeos/química , Plasmídeos/administração & dosagem , Processamento de Proteína Pós-Traducional , Sialoglicoproteínas/química , Transdução de Sinais , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
18.
Nucleic Acids Res ; 48(6): 2982-3000, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31970415

RESUMO

Genomic instability is an underlying hallmark of cancer and is closely associated with defects in DNA damage repair (DDR). Chromatin relaxation is a prerequisite for DDR, but how chromatin accessibility is regulated remains elusive. Here we report that the histone deacetylase SIRT6 coordinates with the chromatin remodeler CHD4 to promote chromatin relaxation in response to DNA damage. Upon DNA damage, SIRT6 rapidly translocates to DNA damage sites, where it interacts with and recruits CHD4. Once at the damage sites, CHD4 displaces heterochromatin protein 1 (HP1) from histone H3 lysine 9 trimethylation (H3K9me3). Notably, loss of SIRT6 or CHD4 leads to impaired chromatin relaxation and disrupted DNA repair protein recruitment. These molecular changes, in-turn, lead to defective homologous recombination (HR) and cancer cell hypersensitivity to DNA damaging agents. Furthermore, we show that SIRT6-mediated CHD4 recruitment has a specific role in DDR within compacted chromatin by HR in G2 phase, which is an ataxia telangiectasia mutated (ATM)-dependent process. Taken together, our results identify a novel function for SIRT6 in recruiting CHD4 onto DNA double-strand breaks. This newly identified novel molecular mechanism involves CHD4-dependent chromatin relaxation and competitive release of HP1 from H3K9me3 within the damaged chromatin, which are both essential for accurate HR.


Assuntos
Cromatina/metabolismo , Reparo do DNA , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Sirtuínas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Modelos Biológicos , Ligação Proteica , Domínios Proteicos
19.
Nucleic Acids Res ; 47(21): 10977-10993, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31612207

RESUMO

The binding of p53-binding protein 1 (53BP1) to damaged chromatin is a critical event in non-homologous DNA end joining (NHEJ)-mediated DNA damage repair. Although several molecular pathways explaining how 53BP1 binds damaged chromatin have been described, the precise underlying mechanisms are still unclear. Here we report that a newly identified H4K16 monomethylation (H4K16me1) mark is involved in 53BP1 binding activity in the DNA damage response (DDR). During the DDR, H4K16me1 rapidly increases as a result of catalyzation by the histone methyltransferase G9a-like protein (GLP). H4K16me1 shows an increased interaction level with 53BP1, which is important for the timely recruitment of 53BP1 to DNA double-strand breaks. Differing from H4K16 acetylation, H4K16me1 enhances the 53BP1-H4K20me2 interaction at damaged chromatin. Consistently, GLP knockdown markedly attenuates 53BP1 foci formation, leading to impaired NHEJ-mediated repair and decreased cell survival. Together, these data support a novel axis of the DNA damage repair pathway based on H4K16me1 catalysis by GLP, which promotes 53BP1 recruitment to permit NHEJ-mediated DNA damage repair.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Histonas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Quebras de DNA de Cadeia Dupla , Células HCT116 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Ligação Proteica
20.
Front Neurol ; 10: 995, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616359

RESUMO

Introduction: Acute cerebellar ataxia (ACA) is the most common form of pediatric ataxia. Changes in gut flora can modulate the nervous system, influencing brain function via the gut-brain axis (GBA). This study aimed to illustrate the relationship between intestinal microbiota and ACA. Method: A total of 30 and 12 children were randomly sampled from history of intestinal surgery (HOIS) and no intestinal surgery groups (NHOIS), respectively. In addition, 10 healthy children who sought physical examination in Children's Hospital of Nanjing Medical University were recruited as a control group. The stool samples were 16S rRNA detected. Results: We observed that many ACA children had intestinal surgery history prior to the onset of ACA. The 16S rRNA sequencing indicated that HOIS and control groups were well-distinguished by principal component analysis. The discrepancy between HOIS and NHOIS groups were also displayed by principal component analysis score plot. However, no differences were found between NHOIS and control groups. The results of student's t-test were consistent with principal component analysis. A total of nine different genera were identified between HOIS and control groups. Five genera and a phylum showed significant differences between HOIS and NHOIS groups. Conclusion: Altered genera and phyla associated with ACA were identified. Our findings provide new insight into treating and preventing ACA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA