Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Front Med ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769281

RESUMO

Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.

2.
EMBO J ; 43(9): 1722-1739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580775

RESUMO

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Megacariócitos , Animais , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Hematopoese/fisiologia , Mesonefro/embriologia , Mesonefro/metabolismo , Mesonefro/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Técnicas de Cocultura
3.
Nat Commun ; 15(1): 2255, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490977

RESUMO

An understanding of the mechanisms regulating embryonic hematopoietic stem cell (HSC) development would facilitate their regeneration. The aorta-gonad-mesonephros region is the site for HSC production from hemogenic endothelial cells (HEC). While several distinct regulators are involved in this process, it is not yet known whether macroautophagy (autophagy) plays a role in hematopoiesis in the pre-liver stage. Here, we show that different states of autophagy exist in hematopoietic precursors and correlate with hematopoietic potential based on the LC3-RFP-EGFP mouse model. Deficiency of autophagy-related gene 5 (Atg5) specifically in endothelial cells disrupts endothelial to hematopoietic transition (EHT), by blocking the autophagic process. Using combined approaches, including single-cell RNA-sequencing (scRNA-seq), we have confirmed that Atg5 deletion interrupts developmental temporal order of EHT to further affect the pre-HSC I maturation, and that autophagy influences hemogenic potential of HEC and the formation of pre-HSC I likely via the nucleolin pathway. These findings demonstrate a role for autophagy in the formation/maturation of hematopoietic precursors.


Assuntos
Hemangioblastos , Células-Tronco Hematopoéticas , Animais , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Embrião de Mamíferos , Hematopoese/genética , Fatores de Transcrição/metabolismo , Autofagia/genética , Mesonefro
4.
Eur J Med Chem ; 268: 116237, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387337

RESUMO

Acute myeloid leukemia (AML) patients harboring Fms-like tyrosine kinase 3 (FLT3) mutations often suffer from poor prognosis and relapse. Targeted protein degradation utilizing proteolysis targeting chimeras (PROTACs) is considered as a novel therapeutic strategy in drug discovery and may be a promising modality to target FLT3 mutations for the development of potent anti-AML drugs. Herein, a kind of FLT3-targeting PROTACs was rationally developed based on a FLT3 inhibitor previously reported by us. The representative compound 35 showed potent and selective antiproliferative activities against AML cells harboring FLT3 mutations. Western blot assay demonstrated that compound 35 effectively induced the degradation of FLT3-ITD and decreased the phosphorylation levels of FLT3-ITD, AKT, STAT5 and ERK in MV4-11 cells in a dose-dependent manner. Flow cytometry analysis illustrated that compound 35 strongly induced apoptosis and cell cycle arrest in MV4-11 cells in a dose-dependent manner. Moreover, compound 35 displayed favorable metabolic stability in in-vitro liver microsomes studies. Comparative molecular dynamic (MD) simulation studies further elucidated the underlying mechanism of compound 35 to stabilize the dynamic ensemble of the FLT3-compound 35-cereblon (CRBN) ternary complex. Taken together, compound 35 could serve as a lead molecule for developing FLT3 degraders against AML.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteólise , Leucemia Mieloide Aguda/metabolismo , Apoptose , Mutação , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
5.
Artigo em Inglês | MEDLINE | ID: mdl-38277041

RESUMO

This study aimed to explore the role of miR-429 on the progression of oral squamous cell carcinoma (OSCC). OSCC cell lines were transfected with miR-429 mimic, pcDNA3.1-RUNX1, or pcDNA3.1-ITGB1, and their cell viability, apoptosis, migration, and invasion abilities were analyzed by cell counting, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, wound healing, and transwell assays, respectively. Furthermore, luciferase reporter assay, RNA pull-down, and ChIP were used to assess the regulation of miR-429, RUNX1, and ITGB1 expression in OSCC. Lastly, the biological role of the RUNX1/miR-429 feedback loop was explored in nude mice. The results revealed that miR-429 level was down-regulated, while RUNX1 and ITGB1 levels were up-regulated in OSCC tissues and that miR-429 was negatively correlated with RUNX1 and ITGB1 in OSCC tissues. Transfection of miR-429 mimic suppressed OSCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, we found that miR-429 participated in OSCC progression by directly targeting ITGB1. Additionally, we found that RUNX1 negatively regulated miR-429 expression by binding to its promoter. Our results also revealed that the RUNX1/miR-429 feedback loop regulated ITGB1 expression and that RUNX1 overexpression rescued the inhibitory effects of miR-429 mimic on OSCC cells. In addition, miR-429 mimic significantly suppressed tumor growth, inflammatory cell infiltration, EMT, and ITGB1 expression in vivo, which were inhibited by RUNX1 overexpression. Altogether, these results indicate that the RUNX1/miR-429 feedback loop promoted growth, metastasis, and EMT in OSCC by targeting ITGB1.

6.
Acta Diabetol ; 61(4): 515-524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244081

RESUMO

AIMS: Diabetic osteoporosis (DOP) is the most common secondary form of osteoporosis. Diabetes mellitus affects bone metabolism; however, the underlying pathophysiological mechanisms remain unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression is upregulated in conditions characterized by vascular injury, such as atherosclerosis, hypertension, and diabetes. Additionally, Notch, HIF-1α, and VEGF are involved in angiogenesis and bone formation. Therefore, we aimed to investigate the expression of Notch, HIF-1α, and VEGF in the LOX-1 silencing state. METHODS: Rat bone H-type vascular endothelial cells (THVECs) were isolated and cultured in vitro. Cell identification was performed using immunofluorescent co-expression of CD31 and Emcn. Lentiviral silencing vector (LV-LOX-1) targeting LOX-1 was constructed using genetic recombination technology and transfected into the cells. The experimental groups included the following: NC group, HG group, LV-LOX-1 group, LV-CON group, HG + LV-LOX-1 group, HG + LV-CON group, HG + LV-LOX-1 + FLI-06 group, HG + LV-CON + FLI-06 group, HG + LV-LOX-1 + LW6 group, and HG + LV-CON + LW6 group. The levels of LOX-1, Notch, Hif-1α, and VEGF were detected using PCR and WB techniques to investigate whether the expression of LOX-1 under high glucose conditions has a regulatory effect on downstream molecules at the gene and protein levels, as well as the specific molecular mechanisms involved. RESULTS: High glucose (HG) conditions led to a significant increase in LOX-1 expression, leading to inhibition of angiogenesis, whereas silencing LOX-1 can reverse this phenomenon. Further analysis reveals that changes in LOX-1 will promote changes in Notch/HIF-1α and VEGF. Moreover, Notch mediates the activation of HIF-1α and VEGF. CONCLUSIONS: The activation of LOX-1 and the inhibition of Notch/HIF-1α/VEGF in THVECs are the main causes of DOP. These findings contribute to our understanding of the pathogenesis of DOP and offer a novel approach for preventing and treating osteoporosis.


Assuntos
Diabetes Mellitus , Hiperglicemia , Osteoporose , Animais , Ratos , Células Endoteliais/metabolismo , Glucose , Hiperglicemia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Receptores Depuradores Classe E/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Mol Cell Probes ; 73: 101949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215889

RESUMO

BACKGROUND: There is increasing evidence that platelet-derived extracellular vesicles (PEVs) may be involved in the mechanisms of inflammatory storm and organ damage in sepsis. However, there are no available studies on PEVs and renal injury in patients with urosepsis. METHODS: We analyzed the concentration and ratio of PEVs in plasma by flow cytometry and measured plasma IL-1ß/IL-6/TNF-α/NGAL levels by ELISA. Correlation analysis was also used to examine the concentration of PEVs in relation to levels of inflammatory factors and indicators of kidney damage, as well as the severity of the disease. Finally, the receiver operating characteristic curves were produced for PEVs concentrations as a diagnosis of S-AKI/AKI. RESULTS: We found significantly higher levels of IL-1ß/IL-6/TNF-α/NGAL in patients with urogenital sepsis. Furthermore, the concentrations of PEVs in plasma were significantly elevated in patients with urosepsis, especially in patients with Gram-negative bacterial infections, which were significantly and positively correlated with IL-1ß/IL-6/TNF-α/NGAL levels. The area under the curve for PEVs diagnosing S-AKI and AKI was 0.746 [0.484, 1.000] and 0.943 [0.874, 1.000] respectively. CONCLUSION: Overall, the present study suggested that PEVs may mediate the release of inflammatory mediators in patients with urosepsis and participate in the mechanism of acute kidney injury, as well as having potential as diagnostic indicators of S-AKI and AKI and as early warning indicators of the severity of patients with urosepsis.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Sepse , Humanos , Lipocalina-2 , Fator de Necrose Tumoral alfa , Interleucina-6 , Sepse/complicações , Injúria Renal Aguda/complicações , Injúria Renal Aguda/diagnóstico , Rim , Biomarcadores
8.
Andrology ; 12(1): 45-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37038051

RESUMO

BACKGROUND: Erectile dysfunction is a condition with a high incidence among adult men. Lycopene has been shown to lower blood glucose and reduce weight in diabetic patients because of its antioxidant and anti-inflammatory properties. However, the association between lycopene and the incidence of erectile dysfunction is unclear. OBJECTIVE: The aim of this study was to examine the dietary lycopene intake and its association with erectile dysfunction risk in the US population. MATERIALS AND METHODS: We investigated the lycopene intake of adult participants with complete information on clinical variables from the National Health and Nutrition Examination Survey between 2001 and 2004. Dose-response curve analysis was applied to explore the association between lycopene intake and erectile dysfunction. Logistic regression models were used to adjust for confounders. Different ethnicities, body mass index level, hypertension status, diabetes status, and smoking status were analyzed as subgroups. Propensity score matching was employed to eliminate the effects of potential confounders to confirm the reliability of the results. RESULTS: A total of 3265 participants with lycopene consumption data were included in our study, including 931 individuals with erectile dysfunction and 2334 without erectile dysfunction during National Health and Nutrition Examination Survey 2001-2004. We found more consumption of lycopene in the non-erectile dysfunction group than in the erectile dysfunction group. Dose-response curve analysis revealed a significant negative association between lycopene intake and erectile dysfunction prevalence. After adjusting for age, race, cigarette smoking, body mass index, annual family income, education, physical activity, hypertension, diabetes, depression, and testosterone level, we found that increased lycopene intake reduced the odds ratio of erectile dysfunction. Low lycopene intake was positively related to erectile dysfunction in almost all subgroups, especially in Mexican American, non-Hispanic white, body mass index <25, hypertension positive, diabetes mellitus negative, and smoke negative. Furthermore, the results were confirmed in the 1:1 matched group. CONCLUSION: Our national data suggest that lower dietary lycopene intake is positively associated with an increased risk of erectile dysfunction in US men.


Assuntos
Diabetes Mellitus , Disfunção Erétil , Hipertensão , Masculino , Adulto , Humanos , Disfunção Erétil/etiologia , Inquéritos Nutricionais , Licopeno , Reprodutibilidade dos Testes , Diabetes Mellitus/epidemiologia , Hipertensão/complicações , Hipertensão/epidemiologia
9.
Eur J Pharm Biopharm ; 193: 16-27, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865134

RESUMO

Triple-negative breast cancer (TNBC) has been regarded as the strongest malignancy in cases of breast cancer with a poor prognosis. The development of effective treatment strategies for TNBC has always been an urgent and unmet need. The intracellular redox balance is essential for maintaining TNBC cell malignancy. Disrupting intracellular redox balance by enlarging reactive oxygen species (ROS) generation and facilitating glutathione (GSH) depletion to amplify intracellular oxidative stress may be an alternative strategy to eliminate TNBC cells. However, inducing ROS generation and GSH depletion concurrently may be challenging. Herein, a diselenium linked-dimeric prodrug nanomedicine FA-SeSe-NPs was developed to break the intracellular redox homeostasis for TNBC targeted therapy. The dimeric prodrug was synthesized by conjugating two cucurbitacin B (CuB) molecules via one diselenium bond, which was subsequently assembled with FA-PEG-DSPE to form the final nanomedicine FA-SeSe-NPs. Using the active targeting potential of folic acid (FA), FA-SeSe-NPs could accumulate in tumor tissue with elevated levels and then be specifically internalized by cancer cells. In the high ROS and GSH conditions of TNBC cells, the diselenium bond can specifically respond to ROS to produce selenium free radicals to increase ROS and react with GSH to generate S-Se bond to deplete GSH. The released CuB further induced ROS production in TNBC cells. The diselenium bond and CuB functioned synergistically to amplify oxidative stress to kill the TNBC cells. Here, we provide a promising strategy to disrupt the intracellular redox balance of cancer cells for effective TNBC therapy.


Assuntos
Nanopartículas , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Nanomedicina , Linhagem Celular Tumoral , Oxirredução , Nanopartículas/química
10.
Biomed Pharmacother ; 166: 115391, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37677964

RESUMO

BACKGROUND: Orthodontic tooth movement (OTM) is a typical treatment that corrects malaligned teeth by applying mechanical forces. However, mechanical overload often leads to damage of PDL fibroblasts. Sanhuang decoction (SHD) is commonly used to inhibit inflammation and oxidative stress. However, the mechanism of SHD for OTM treatment is still unclear. Therefore, this study attempts to explore the underlying mechanism through relevant experiments. METHODS: In the present paper, we established a OTM rat model and further explored the effects of SHD on the PDL of OTM rats. The OTM model and effects of SHD were determined by micro-CT, and the PDL pathological changes, PDL width and capillaries in PDL were observed by H&E staining. Subsequently, the ROS levels in PDL was determined using flow cytometry analysis with DCFH-DA staining, MDA contents and antioxidative enzymes activities were also measured using commercial kits. Furthermore, the autophagy of PDL fibroblasts and proteins in the PI3K/Akt/mTOR pathway were detected using immunoluminescence, qPCR and western blotting assays. RESULTS: The results showed SHD treatment can alleviate the decrease of PDL cells and capillaries induced by OTM, and improve the MDA and ROS levels in PDL, as well as enhance the activities of SOD and GSH-Px. Further experiments indicated SHD decreased the autophagy levels of PDL fibroblasts via promoting the phosphorylation levels of mTOR, PI3K and Akt proteins. CONCLUSION: SHD inhibited autophagy of periodontal ligament fibroblasts during orthodontic tooth movement by inhibiting oxidative stress via activating PI3K-Akt-mTOR pathway. Our present findings suggested SHD treatment would be useful for management of the possible disorders occurs in orthodontic tooth movement therapy.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Ligamento Periodontal , Espécies Reativas de Oxigênio , Técnicas de Movimentação Dentária , Autofagia , Fibroblastos , Serina-Treonina Quinases TOR
11.
J Hepatocell Carcinoma ; 10: 1281-1293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554583

RESUMO

Purpose: Tripartite motif containing 55 (TRIM55) is a member of the TRIM family and functions as an E3 ubiquitin ligase. It acts as a cancer promoter or suppressor in the malignant processes of multiple cancers. However, its proliferative function in hepatocellular carcinoma (HCC) has been poorly studied, and its underlying molecular mechanism remains unclear. In the present study, we investigated the role of TRIM55 in HCC and its mechanism of promoting HCC proliferation. Materials and Methods: Protein expression levels of TRIM55 were measured in paired HCC and normal tissue samples using immunohistochemical (IHC) staining. The correlation between TRIM55 and clinical features was evaluated by statistical analysis. At the same time, overexpression and knockdown experiments, cycloheximide (CHX) interference experiments, ubiquitination, co-immunoprecipitation and immunofluorescence staining experiments, as well as animal experiments were used to evaluate the potential mechanism that TRIM55 promotes proliferation of hepatocellular carcinoma in vitro and in vivo. Results: TRIM55 expression in HCC specimens was higher compared with the corresponding non-tumor tissues. The overall survival and disease-free survival time of patients with high TRIM55 expression were shorter than those with low expression of TRIM55. Functionally, TRIM55 promoted the proliferation of HCC cells and accelerated the growth of HCC xenografts. Mechanistically, TRIM55 interacted with thyroid receptor interacting protein 6 (TRIP6) and regulate its stability by influencing the ubiquitination process, thereby affecting the Wnt signaling pathway. Conclusion: Our results indicate that TRIM55 promotes HCC proliferation by activating Wnt signaling pathways by stabilizing TRIP6. Therefore, targeting TRIM55 may be an effective therapeutic strategy to inhibit HCC growth.

12.
Pharmaceutics ; 15(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514186

RESUMO

Small-molecule modulators of neurotensin receptor 1 (NTSR1), a class A G-protein-coupled receptor (GPCR), has emerged as promising therapeutic agent for psychiatric disorders and cancer. Interestingly, a chemical group substitution in NTSR1 modulators can launch different types of downstream regulation, highlighting the significance of deciphering the internal fine-tuning mechanism. Here, we conducted a synergistic application of a Gaussian accelerated molecular dynamics simulation, a conventional molecular dynamics simulation, and Markov state models (MSM) to investigate the underlying mechanism of 'driver chemical groups' of modulators triggering inverse signaling. The results indicated that the flexibility of the leucine moiety in NTSR1 agonists contributes to the inward displacement of TM7 through a loosely coupled allosteric pathway, while the rigidity of the adamantane moiety in NTSR1 antagonists leads to unfavorable downward transduction of agonistic signaling. Furthermore, we found that R3226.54, Y3196.51, F3537.42, R1483.32, S3567.45, and S3577.46 may play a key role in inducing the activation of NTSR1. Together, our findings not only highlight the ingenious signal transduction within class A GPCRs but also lay a foundation for the development of targeted drugs harboring different regulatory functions of NTSR1.

13.
J Cell Mol Med ; 27(11): 1523-1538, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132043

RESUMO

Liver cancer is one of the most common solid tumours, and ranks as the third leading cause of cancer-associated mortality around the world. This study has linked RNF12 to the pathogenesis of liver cancer. Based on the analysis of patient samples and database data, high RNF12 expression was found in liver cancer, in correlation with worse clinicopathological features and a poor prognosis. Meantime, RNF12 could promote the progression of liver cancer in vitro and in vivo. Mechanistically, RNF12 could interact with EGFR and decrease the internalization of EGFR to activate EGF/EGFR signalling. In addition, PI3K-AKT signalling takes part in the regulation of liver cancer cell proliferation and migration of RNF12. And AKT inhibitor MK2206 could reverse RNF12-mediated cellular proliferation and migration in liver cancer. The possibility of the physical interaction between RNF12 and EGFR might lay a foundation to develop intervention strategies for liver cancer prevention and therapy.


Assuntos
Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral
14.
Nucleic Acids Res ; 51(W1): W129-W133, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37078611

RESUMO

Driver mutations can contribute to the initial processes of cancer, and their identification is crucial for understanding tumorigenesis as well as for molecular drug discovery and development. Allostery regulates protein function away from the functional regions at an allosteric site. In addition to the known effects of mutations around functional sites, mutations at allosteric sites have been associated with protein structure, dynamics, and energy communication. As a result, identifying driver mutations at allosteric sites will be beneficial for deciphering the mechanisms of cancer and developing allosteric drugs. In this study, we provided a platform called DeepAlloDriver to predict driver mutations using a deep learning method that exhibited >93% accuracy and precision. Using this server, we found that a missense mutation in RRAS2 (Gln72 to Leu) might serve as an allosteric driver of tumorigenesis, revealing the mechanism of the mutation in knock-in mice and cancer patients. Overall, DeepAlloDriver would facilitate the elucidation of the mechanisms underlying cancer progression and help prioritize cancer therapeutic targets. The web server is freely available at: https://mdl.shsmu.edu.cn/DeepAlloDriver.


Assuntos
Aprendizado Profundo , Neoplasias , Animais , Camundongos , Regulação Alostérica/genética , Sítio Alostérico , Neoplasias/genética , Proteínas/química , Carcinogênese/genética , Mutação
15.
Cancer Res ; 83(12): 2000-2015, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37057875

RESUMO

Dysregulation of RNA-binding proteins (RBP) is one of the characteristics of cancer. Investigating the biological functions and molecular mechanisms of abnormal RBPs can help uncover new cancer biomarkers and treatment strategies. To identify oncogenic RBPs in triple-negative breast cancer (TNBC), we employed an in vivo CRISPR screen and a TNBC progression model, which revealed small nuclear ribonucleoprotein polypeptide C (SNRPC), a subunit of the U1 small nuclear ribonucleoprotein particle (U1 snRNP), as a key modulator of TNBC progression. SNRPC was frequently upregulated, which corresponded to poor prognosis in patients with TNBC. SNRPC ablation significantly impaired the proliferation, migration, and invasion of TNBC cells in vitro and in vivo. In addition, SNRPC was essential for the stability of U1 snRNP and contributed to the RNA Pol II-controlled transcriptional program. Knockdown of SNRPC decreased RNA Pol II enrichment on a subset of oncogenes (TNFAIP2, E2F2, and CDK4) and reduced their expression levels. Furthermore, SNRPC deletion was confirmed to inhibit TNBC progression partially through regulation of the TNFAIP2-Rac1-ß-catenin signaling pathway. Taken together, this data suggests that SNRPC plays an oncogenic role in TNBC, is a marker of poor prognosis, and may be a valuable therapeutic target for patients with intractable TNBC. SIGNIFICANCE: A functional CRISPR screen identifies SNRPC as an RNA-binding protein that promotes the aggressiveness of breast cancer by facilitating Pol II-controlled transcription of oncogenes.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Prognóstico , RNA Polimerase II/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
16.
Genes Genomics ; 45(5): 581-592, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941464

RESUMO

BACKGROUND: Long-non-coding RNA PVT1 (lncRNA PVT1) can be used as an oncogenic regulatory non-coding RNA (ncRNA) for many cancers. However, its function and mechanism in breast cancer (BRCA) are still not clearly elucidated. OBJECTIVE: We attempt to explain the mechanism of PVT1's role in breast cancer from different perspectives. METHODS: We analyzed the expression of PVT1 and its correlation with the breast cancer related clinical data in the The Cancer Genome Atlas (TCGA) database. We used PVT1 overexpression and knockdown lentivirus to infect breast cancer MDA-MB-231 cell line for cell function verification, in vitro using CCK-8 to measure proliferation, flow cytometry to measure apoptosis, transwell test to measure invasion and migration ability, detecting cell extracellular acidification rate (ECAR) to assess glycolysis metabolism and explore the biological functions of PVT1 in breast cancer cells. Transcriptome sequencing was used to analyze the changes of related genes in cells after overexpression of PVT1. In vivo we used a xenograft model to study the effect of PVT1 on breast cancer. RESULTS: PVT1 was up-regulated in breast cancer tissues and was positively correlated with the clinical stage of breast cancer patients. Overexpression of PVT1 in vitro promoted cell proliferation, migration and invasion, and promoted tumor growth in vivo. Knockdown of PVT1 led to the opposite biological consequence. Further bioinformatics analysis showed that PVT1 changes the glycolysis metabolism of tumors through regulation of glycolysis-related genes. In addition, the expression of miR-145-5p is negatively correlated with PVT1. We consider the possibility of PVT1 promoting cell proliferation and metastasis by regulating the aerobic glucose metabolism in breast cancer cells through sponging the miR-145-5p. CONCLUSION: Our results reveal a potential pathway for competing endogenous RNA to regulate breast cancer glucose metabolism. PVT1 regulates glycolysis related genes expression by competitively binding to endogenous miR-145-5p in breast cancer cells to change the metabolic phenotype. This may Provide new ideas for precise molecular therapy targets for breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/genética , Glicólise/genética , Glucose
17.
Front Oncol ; 12: 1039987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568195

RESUMO

Purpose: To assess the association between sarcopenia and the risk of early biliary infection (EBI) after percutaneous transhepatic biliary stent (PTBS) placement in patients with inoperable biliary tract cancer (BTC). Patients and methods: In this single center, retrospective observational study, patients diagnosed with inoperable BTC undergoing PTBS placement between January 2013 and July 2021 were enrolled. Preoperative sarcopenia was defined based on skeletal muscle mass measured by computed tomography images on the level of third lumbar vertebra within one month before PTBS placement. Patients were divided into two groups in accordance with the status of sarcopenia. Univariate and further multivariate logistic analyses were performed to determine predictors for EBI. Stratified and interactive analyses were conducted to investigate the stability of results. Further receiver operating characteristic curve was performed to determine the predictive value of sarcopenia on EBI after PTBS placement. Results: Totally, 134 patients were included in this retrospective study, with 45 (33.6%) patients characterized as sarcopenia. The incidence rate of EBI was 26.9% (36/134). Multivariate analyses demonstrated that sarcopenia [Odds ratio (OR), 2.75; 95%CI: 1.11-6.77; P=0.028], obstruction length (OR, 1.04; 95%CI: 1.00-1.08; P=0.030) and diabetes (OR, 2.46; 95%CI: 1.01-5.96; P=0.047) were significant predictors of EBI. There were no significant interactions in different subgroups (P for interaction > 0.05). Moreover, the areas under the curves (AUC) revealed that the combined index containing sarcopenia, obstruction length, and diabetes showed the better predictive value (AUC= 0.723) than either one alone. Conclusion: Sarcopenia increased the risk of EBI in patients with inoperable BTC after PTBS placement. Preoperative assessment of sarcopenia may aid in risk stratification. Patients with sarcopenia should be given intensive monitoring.

18.
Front Surg ; 9: 985292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36468076

RESUMO

Objective: The purpose of the study was to evaluate the predictive value of prognostic nutritional index (PNI) on early complications (within 30-day) after robot-assisted radical cystectomy (RARC) and urinary diversion. Patients and methods: Patients underwent RARC and urinary diversion between November 2018 and December 2021 in our centre were screened in this retrospective study. Baseline characteristics and perioperative data were recorded. Early complications after surgery were classified according to Clavien-Dindo system. Univariate and multivariate logistic analysis were performed to decide the potential factors associated with post-RARC complications. The receiver operating characteristic (ROC) curve was conducted to determine the predictive value of PNI on early overall and major complications after RARC. Results: Overall 139 men and 13 women with a median age of 69 years and mean BMI of 24.4 kg/m2 were included in this study. As for urinary diversion, most patients (n = 111, 73%) received cutaneous ureterostomy, 36 patients (23.7%) underwent orthotopic neobladder and 5 patients (3.3%) received ileal conduit. The incidence of postoperative complication rate was 44.7%, which included 82.2% minor complications and 17.8% major complications. Further univariate and multivariate logistic analyses demonstrated that hypertension (OR = 2.96, 95% CI: 1.24-7.07, P = 0.015), PNI (OR = 0.73, 95% CI: 0.62-0.86, P < 0.001), and CCI (OR = 1.44, 95% CI: 1.01-2.06, P = 0.047) were independent risk factors of early complications after RARC. Moreover, PNI (OR = 0.72, 95% CI: 0.60-0.86, P < 0.001) was also the predictor of major complications after RARC. The ROC curve demonstrated that PNI (AUC = 0.829; AUC = 0.840) has a great predictive value in early overall and major complications after RARC. Conclusion: PNI can be an early alert for RARC patients thus aiding in closer monitoring and postoperative management.

19.
Life Sci ; 304: 120698, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35690105

RESUMO

Epidemiological studies have shown that hepatocellular carcinoma (HCC) is a main cause of tumor death worldwide. Accumulating data indicate that ginsenoside CK is an effective compound for preventing HCC growth and development. However, improvement of pharmaceutical effect of the ginsenoside CK is still needed. In our study, we performed acetylation of ginsenoside CK (CK-3) and investigated the antitumor effects of the derivative in vitro and in vivo. The cytotoxicity analysis revealed that compared with CK, CK-3 could inhibit the proliferation of multiple tumor cell lines at a lower concentration. Treating with CK-3 on HCC cells arrested cell cycle in G2/M phase and induced cell apoptosis through AO/EB staining, TUNEL analysis and flow cytometry. Meanwhile, CK-3 significantly inhibited tumor growth in an HCC xenograft model and showed no side effect on the function of the main organs. Mechanistically, whole transcriptome analysis revealed that the antitumor effect of CK-3 was involved in the Hippo signaling pathway. The immunoblotting and immunofluorescence results illustrated that CK-3 directly facilitated the phosphorylation of YAP1 and decreased the expression of the main transcription factor TEAD2 in HCC cell lines and tumor tissue sections. Collectively, our results demostrate the formation of a new derivative of ginsenoside CK and its regulatory mechanism in HCC, which could activate the Hippo-YAP1-TEAD2 signaling pathway to regulate HCC progression. This research could provide a new direction for traditional Chinese medicine in the therapy of tumors.


Assuntos
Carcinoma Hepatocelular , Ginsenosídeos , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Humanos , Neoplasias Hepáticas/patologia
20.
Front Surg ; 9: 852137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558381

RESUMO

Background: Radiation-emitting metallic stent (REMS) placement is increasingly used for malignant biliary obstruction (MBO) caused by unresectable biliary tract carcinoma (UBTC) in clinical practice. The study is aimed to evaluate the prognostic value of sarcopenia, myosteatosis, and their combination on overall survival (OS) in patients treated with REMS for UBTC. Methods: Patients diagnosed with UBTC who underwent REMS placement between January 2013 and May 2021 were included consecutively in this retrospective study. Sarcopenia and myosteatosis were defined based on skeletal muscle index (SMI) and skeletal muscle attenuation (SMA), respectively, which were measured by computer tomography (CT) images on the level of the third lumbar vertebral body before REMS placement. Patients were categorized into two groups by sex-specific cutoff value for sarcopenia and myosteatosis, and OS rates were compared between the groups. Univariate and multivariate cox regression analyses were used to assess factors associated with OS. Results: Data of 135 patients included were retrospectively reviewed and analyzed. Median OS was 7.17 months in total cohort. Patients in the sarcopenia group had significant poorer OS than those in the non-sarcopenia group (median: 3.23 vs. 11.60 months, p < 0.001). OS was shorter in patients with myosteatosis than those without myosteatosis (median: 4.40 vs. 9.17 months, p < 0.001). Sarcopenia (odds ratio [OR] = 9.61; 95% CI = 5.41-17.09; p < 0.001) and myosteatosis (OR = 1.70; 95% CI = 1.13-2.57; p = 0.012) were significantly associated with OS. Combining sarcopenia and myosteatosis (CSM) showed a better predictive accuracy in OS than either one (area under curves: CSM vs. sarcopenia = 0.760 vs. 0.698, p = 0.049; CSM vs. myosteatosis = 0.760 vs. 0.671, p = 0.006). Conclusion: Sarcopenia and myosteatosis are negative predictors of survival in patients who underwent REMS placement for UBTC. CSM seemed to show a better prognostic value than either sarcopenia or myosteatosis alone. They can be used preoperatively for risk evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA