RESUMO
Myocardial ischemia-reperfusion (I/R) injury is a pathological process characterized by cardiomyocyte apoptosis, which leads to cardiac dysfunction. Increasing evidence shows that abnormal expression of long noncoding RNAs (lncRNAs) plays a crucial role in cardiovascular diseases. In this study we investigated the role of lncRNAs in myocardial I/R injury. Myocardial I/R injury was induced in mice by ligating left anterior descending coronary artery for 45 min followed by reperfusion for 24 h. We showed that lncRNA KnowTID_00006395, termed lncRNA-6395 was significantly upregulated in the infarct area of mouse hearts following I/R injury as well as in H2O2-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Overexpression of lncRNA-6395 led to cell apoptosis and the expression change of apoptosis-related proteins in NMVCs, whereas knockdown of lncRNA-6395 attenuated H2O2-induced cell apoptosis. LncRNA-6395 knockout mice (lncRNA-6395+/-) displayed improved cardiac function, decreased plasma LDH activity and infarct size following I/R injury. We demonstrated that lncRNA-6395 directly bound to p53, and increased the abundance of p53 protein through inhibiting ubiquitination-mediated p53 degradation and thereby facilitated p53 translocation to the nucleus. More importantly, overexpression of p53 canceled the inhibitory effects of lncRNA-6395 knockdown on cardiomyocyte apoptosis, whereas knockdown of p53 counteracted the apoptotic effects of lncRNA-6395 in cardiomyocytes. Taken together, lncRNA-6395 as an endogenous pro-apoptotic factor, regulates cardiomyocyte apoptosis and myocardial I/R injury by inhibiting degradation and promoting sub-cellular translocation of p53.
Assuntos
Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Peróxido de Hidrogênio/farmacologia , Infarto/patologia , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
PURPOSE: Periostin mediates critical steps in gastric cancer and is involved in various signaling pathways. However, the roles of periostin in promoting gastric cancer metastasis are not clear. The aim of this study was to investigate the relevance between periostin expression and gastric cancer progression and the role of stress-related hormones in the regulation of cancer development and progression. MATERIALS AND METHODS: Normal, cancerous and metastatic gastric tissues were collected from patients diagnosed with advanced gastric cancer. The in vivo expression of periostin was evaluated by in situ hybridization and immunofluorescent staining. Meanwhile, human gastric adenocarcinoma cell lines MKN-45 and BGC-803 were used to detect the in vitro expression of periostin by using quantitative real-time polymerase chain reaction (PCR) and western blotting. RESULTS: Periostin is expressed in the stroma of the primary gastric tumors and metastases, but not in normal gastric tissue. In addition, we observed that periostin is located mainly in pericryptal fibroblasts, but not in the tumor cells, and strongly correlated to the expression of α-smooth muscle actin (SMA). Furthermore, the distribution patterns of periostin were broader as the clinical staging of tumors progressed. We also identified a role of stress-related signaling in promoting cancer development and progression, and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells. CONCLUSION: These findings suggest that the distribution pattern of periostin was broader as the clinical staging of the tumor progressed and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells.
Assuntos
Adenocarcinoma/metabolismo , Moléculas de Adesão Celular/metabolismo , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isoproterenol/farmacologia , Neoplasias Gástricas/metabolismo , Adenocarcinoma/patologia , Agonistas Adrenérgicos beta/farmacologia , Idoso , Western Blotting , Moléculas de Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Mucosa Gástrica/metabolismo , Humanos , Masculino , Estadiamento de Neoplasias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Estômago/patologia , Neoplasias Gástricas/patologia , Regulação para CimaRESUMO
The emerging role of stress-related signaling in regulating cancer development and progression has been recognized. However, whether stress serves as a mechanism to promote gastric cancer metastasis is not clear. Here, we show that the ß2-AR agonist, isoprenaline, upregulates expression levels of CD44 and CD44v8-10 in gastric cancer cells. CD44, a cancer stem cell-related marker, is expressed at high levels in gastric cancer tissues, which strongly correlates with the occurrence of epithelial-mesenchymal transition (EMT)-associated phenotypes both in vivo and in vitro. Combined with experimental observations in two human gastric cancer cell lines, we found that ß2-AR signaling can initiate EMT. It led to an increased expression of mesenchymal markers, such as α-SMA, vimentin, and snail at mRNA and protein levels, and conversely a decrease in epithelial markers, E-cadherin and ß-catenin. Isoprenaline stimulation of ß2-AR receptors activates the downstream target STAT3, which functions as a positive regulator and mediated the phenotypic switch toward a mesenchymal cell type in gastric cancer cells. Our data provide a mechanistic understanding of the complex signaling cascades involving stress-related hormones and their effects on EMT. In light of our observations, pharmacological interventions targeting ß2-AR-STAT3 signaling can potentially be used to ameliorate stress-associated influences on gastric cancer development and progression.
Assuntos
Agonistas Adrenérgicos beta/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Isoproterenol/farmacologia , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genéticaRESUMO
BACKGROUND: Matrine is one of the major alkaloids extracted from Sophora flavescens and has been used clinically for breast cancer with notable therapeutic efficacy in China. However, the mechanisms are still largely unknown. METHODS: Cell viability was analyzed by MTT assay. After MCF-7 cells were treated with matrine for 48h, apoptosis was detected by flow cytometry, TUNEL assay and transmission electron microscopy, and the cell cycle distribution was also analyzed by flow cytometry. Further, the expression of PTEN, pAkt, Akt, pBad, Bad, p21(/WAF1/CIP1), and p27(/KIP1) was determined by Western blot. Changes of miR-21 level were quantified by real-time RT-PCR. After miR-21 was transfected in MCF-7 cells, PTEN protein level was measured by Western blot. RESULTS: Matrine inhibited MCF-7 cell growth in a concentration-and time-dependent manner, by inducing apoptosis and cell cycle arrest at G(1)/S phase. Matrine up-regulated PTEN by downregulating miR-21 which in turn dephosphorylated Akt, resulting in accumulation of Bad, p21(/WAF1/CIP1) and p27(/KIP1). CONCLUSION: Our study unraveled, for the first time, the ability of matrine to suppress breast cancer growth and elucidated the miR-21/PTEN/Akt pathway as a signaling mechanism for the anti-cancer action of matrine. Our findings also reinforce the notion that miRNAs can act as mediators of the therapeutic efficacy of natural medicines.
Assuntos
Alcaloides/farmacologia , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína de Morte Celular Associada a bcl/metabolismo , MatrinasRESUMO
Arsenic trioxide (As(2)O(3)) has been widely used to treat patients with acute promyelocytic leukemia and has also been shown to exhibit therapeutic effects on various types of solid tumors, including gastric cancer and lung carcinoma. Breast cancer is a type of solid tumor whose incidence has been increasing for many years. The present study was designed to investigate the effects of As(2)O(3) on the human breast cancer cell line MCF-7, and to explore its potential mechanisms. The MTT assay demonstrated that As(2)O(3) decreased the cellular viability of MCF-7 cells in a concentration-dependent manner. Morphological observation, the TUNEL assay and flow cytometric analysis revealed that apoptosis was involved in the process. An assay for caspase-3 activity suggested that the apoptosis was mediated through caspase-3 activation. Further investigation indicated that protein levels of the human ether-a-go-go-related gene (HERG) were markedly downregulated by As(2)O(3). Taken together, the results indicate that arsenic trioxide induces the apoptosis of human breast cancer MCF-7 cells at least in part through the activation of caspase-3 and the decrease in HERG expression.
RESUMO
It was recently suggested that the antiarrhythmic effect of propranolol, a ss-adrenoceptor antagonist, on ischemic myocardium includes restoration of I(K1) current and Cx43 conductance; however, little is known whether effects on the transient outward current I(to) contribute. A model of myocardial infarction (MI) by ligating the left anterior descending coronary artery was established. Propranolol was given 1 h or daily for 3 months, whole-cell patch-clamp techniques were used to measure I(to). Kv4.2 and PKA levels were analyzed by Western blot and cAMP level was determined by radioimmunoassay. The results showed that propranolol decreased the incidence of arrhythmias induced by acute ischemia and mortality in 3 month MI rats. Propranolol restored the diminished I(to) density and Kv4.2 protein in MI hearts. In addition, neonatal cardiomyocyte pretreatment with propranolol or administrated after hypoxia can resume I(to) density. cAMP/PKA was enhanced in acute MI, the reason of decreased Kv4.2 expression. Treatment with propranolol prevented the increased cAMP/PKA in 1 h MI, whereas propranolol had little effect on decreased cAMP/PKA in 3 months MI. This study demonstrated that both short- and long-term propranolol administrations protect cardiomyocytes against arrhythmias and mortality caused by cardiac ischemia; the involvement of cAMP/PKA signal pathway in the regulation of propranolol on I(to) acted differently along with the ischemic progression.
Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Propranolol/farmacologia , Canais de Potássio Shal/efeitos dos fármacos , Antagonistas Adrenérgicos beta/administração & dosagem , Animais , Western Blotting , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Propranolol/administração & dosagem , Ratos , Ratos Wistar , Canais de Potássio Shal/metabolismo , Fatores de TempoAssuntos
Hipertensão/epidemiologia , Adolescente , Adulto , Idoso , Consumo de Bebidas Alcoólicas/efeitos adversos , China/epidemiologia , Escolaridade , Feminino , Humanos , Hipertensão/etiologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Fumar/efeitos adversosRESUMO
It was previously reported that excessive arsenic trioxide would produce cardiovascular toxicity. Bone marrow mesenchymal stem cells (BMSCs) have been shown to play a supporting role in cardiovascular functions. The increasing apoptosis of BMSCs commonly would promote the development of cardiovascular diseases. Thus we hypothesize that arsenic trioxide caused apoptosis in BMSCs, which provided a better understanding of arsenic toxicity in hearts. The present study was designed to investigate the proapoptotic effects of arsenic trioxide on BMSCs and explore the mechanism underlying arsenic trioxide-induced BMSCs apoptosis. We demonstrate that arsenic trioxide significantly inhibited survival ratios of BMSCs in a concentration-dependent and time-dependent manner. The Annexin V/PI staining and terminal deoxynucleotidyl transferasemediated dUTP nick-end labelling (TUNEL) assay also showed that arsenic trioxide markedly induced the apoptosis of BMSCs. The caspase-3 activity was obviously enhanced in the presence of arsenic trioxide in a concentration-dependent manner in BMSCs. Additionally, arsenic trioxide caused the increase of intracellular free calcium ([Ca(2+)](i)) in rat BMSCs. BAPTA pretreatment may attenuate the apoptosis of BMSCs induced by arsenic trioxide. Taken together, arsenic trioxide could inhibit the proliferation and induce the apoptosis of BMSCs by modulating intracellular [Ca(2+)](i), and activating the caspase-3 activity.
Assuntos
Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Caspase 3/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Óxidos/toxicidade , Animais , Trióxido de Arsênio , Arsenicais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Cálcio/metabolismo , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
1. MicroRNAs (miRNAs), the small non-coding RNAs of approximately 22 nucleotides, are now recognized as a very large family present throughout the genomes of plants and metazoans. These small transcripts modulate protein expression by binding to complementary or partially complementary target protein-coding mRNAs and targeting them for degradation or translational inhibition. 2. The discovery of miRNAs has revolutionized our understanding of the mechanisms that regulate gene expression, with the addition of an entirely novel level of regulatory control. Considerable information on miRNAs has been accumulated in this rapidly evolving research field. We now know that miRNAs play pivotal roles in diverse processes, such as development and differentiation, control of cell proliferation and death, stress response and metabolism. Indeed, aberrant miRNA expression has been documented in human disease as well as in animal models, with evidence for a causative role in tumourigenesis. 3. One of the most active fields of miRNA research is miRNA regulation of apoptosis, a programmed cell death implicated in many human diseases, such as cancer, Alzheimer's disease, hypertrophy and heart failure. Thus far, nearly 30 of 500 human miRNAs have been validated experimentally to regulate apoptosis; this number is likely to increase with future studies. 4. The present review provides a comprehensive summary and analysis of the currently available data, focusing on the transcriptional controls, target genes and signalling pathways linking the apoptosis-regulating miRNAs and apoptotic cell death.
Assuntos
Apoptose/genética , Doença , MicroRNAs/fisiologia , Terapêutica/métodos , Animais , Doença/genética , Sistemas de Liberação de Medicamentos/métodos , Regulação da Expressão Gênica/fisiologia , Marcação de Genes/métodos , Humanos , MicroRNAs/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Terapêutica/tendênciasRESUMO
We recently identified a myelinated vagal afferent subpopulation (Ah type) far more prevalent in female than male rats and showed that this difference extends to functionally specific visceral sensory afferents, baroreceptors of the aortic arch. Excitability of myelinated Ah-type afferents is markedly reduced after ovariectomy (OVX). Here we tested the hypothesis that 17beta-estradiol can selectively restore excitability of these sex-specific vagal afferents. Acutely isolated vagal afferent neurons (VGN) from intact and OVX adult female rats were used with patch-clamp technique and current-clamp protocols to assess the effect of acute application of 17beta-estradiol on neuronal excitability. At over physiologically relevant 17beta-estradiol concentrations for rat (1-10 nM) excitability of myelinated Ah-type vagal afferents is restored to discharge frequencies comparable to those in intact females, albeit with some interesting differences related to burst and sustained patterns of neuronal discharge. Restoration of excitability occurs within 3 min of hormone application and is stereo specific, because 1,000 nM 17alpha-estradiol fails to alter excitability. Furthermore, activation of G protein-coupled estrogen receptor GPR30 with highly selective agonist G-1 similarly restores excitability of Ah-type afferents. The effectiveness of 17beta-estradiol and G-1 is completely eliminated by application of high-affinity estrogen receptor ligand ICI-182,780. 17beta-Estradiol conjugated with BSA is approximately 70% as effective as 17beta-estradiol alone in restoring Ah-type VGN excitability. These data support our conclusions that the cellular mechanisms leading to rapid restoration of neuronal excitability of myelinated Ah-type VGN after OVX occur, at least in part, via membrane-bound estrogen receptors. We contend that recovery of high-frequency discharge at physiologically relevant 17beta-estradiol concentrations implies that this unique subtype of low-threshold myelinated vagal afferent may account for some of the sex-related differences in visceral organ system function. Sex differences in cardiovascular and gastrointestinal function and the potential role of GPR30 in modulation of sex-specific myelinated Ah-type vagal afferents are discussed.
Assuntos
Estradiol/farmacologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Ovariectomia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Animais , Relação Dose-Resposta a Droga , Eletrofisiologia , Feminino , Fibras Nervosas Mielinizadas/fisiologia , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Caracteres SexuaisRESUMO
The present study aimed to evaluate the growth-inhibitory effect of sulforaphane (SFN) and a traditional chemotherapy agent, 5-fluorouracil (5-Fu), against the proliferation of salivary gland adenoid cystic carcinoma high metastatic cell line (ACC-M) and low metastasis cell line (ACC-2). Furthermore, the expression of nuclear factor kappa B (NF-kappaB) which induces resistance to anticancer chemotherapeutic agents was also detected. The combination effect of SFN and 5-Fu was quantitatively determined using the method of median effect principle and the combination index. The nuclear NF-kappaB p65 expression after treatment with the SFN-5-Fu combination was also evaluated by western blot analysis. The ACC-M and ACC-2 cells exhibited relative resistant to 5-Fu. Treatment ACCs cells with SFN and 5-Fu in combination, led to synergistic inhibition on cell growth and a decreased expression in nuclear NF-kappaB p65 protein. This synergistic inhibitory effect was more significant in ACC-M cells, which is associated with the greatly decreased expression of NF-kappaB p65 (almost 5-fold) after the combination treatment. Our results demonstrate synergism between SFN and 5-Fu at higher doses against the ACC-M and ACC-2 cells, which was associated with the decreased expression of nuclear NF-kappaB p65 protein.
Assuntos
Carcinoma Adenoide Cístico/tratamento farmacológico , Fluoruracila/farmacologia , Neoplasias das Glândulas Salivares/tratamento farmacológico , Tiocianatos/farmacologia , Anticarcinógenos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Isotiocianatos , Sulfóxidos , Fator de Transcrição RelA/metabolismoRESUMO
Evidence for sexual dimorphism in autonomic control of cardiovascular function is both compelling and confounding. Across healthy and disease populations sex-associated differences in neurocirculatory hemodynamics are far too complex to be entirely related to sex hormones. As an initial step toward identifying additional physiological mechanisms, we investigated whether there is a sex bias in the relative expression of low-threshold-myelinated and high-threshold-unmyelinated aortic baroreceptor afferents in rats. These two types of afferent fibers have markedly different reflexogenic effects upon heart rate and blood pressure and thus the potential impact upon baroreflex dynamics could be substantial. Our results, using a combination of a patch-clamp study of fluorescently identified aortic baroreceptor neurons (ABN) and morphometric analysis of aortic baroreceptor nerve fibers, demonstrate that females exhibit a greater percentage of myelinated baroreceptor fibers (24.8% vs. 18.7% of total baroreceptor fiber population, P < 0.01) and express a functional subtype of myelinated ABN rarely found in age-matched males (11% vs. 2.3%, n = 107, P < 0.01). Interestingly, this neuronal phenotype is more prevalent in the general population of female vagal afferent neurons (17.7% vs. 3.8%, n = 169, P < 0.01), and ovariectomy does not alter its expression but does lessen neuronal excitability. These data suggest there are fundamental neuroanatomical and electrophysiological differences between aortic baroreceptor afferents of female and male rats. Possible explanations are presented as to how such a greater prevalence of low-threshold myelinated afferents could be a contributing factor to the altered baroreflex sensitivity and vagal tone of females compared with males.
Assuntos
Vias Aferentes/fisiologia , Pressorreceptores/fisiologia , Nervo Vago/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Vias Aferentes/anatomia & histologia , Animais , Aorta/inervação , Aorta/fisiologia , Capsaicina/farmacologia , Análise por Conglomerados , Eletrofisiologia , Feminino , Masculino , Microscopia Eletrônica , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ovariectomia , Técnicas de Patch-Clamp , Pressorreceptores/anatomia & histologia , Agonistas do Receptor Purinérgico P2 , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Nervo Vago/anatomia & histologiaRESUMO
Human ether-a-go-go-related gene (HERG) encodes the rapid component of the cardiac delayed rectifier K+ current, which has an important effect on both proarrhythmia and antiarrhythmia. To investigate the effect of sophocarpine (SC) on HERG channel stably expressing in human embryonic kidney-293 (HEK293) cells, whole-cell patch-clamp technique was used to record HERG current and kinetic curves. As the result, it was found that SC inhibited HERG current in a concentration-dependent manner (10, 30, 100, and 300 micromol x L(-1)). At 0 mV, 10, 30, 100, and 300 micromol x L(-1) SC respectively inhibited IHERG by Istep ( 10.7 +/- 2.8)% , (11.3 +/- 5.5)% , (47.0 +/- 2.3)% and (53.7 +/- 2.5)% , and Itail (1.1 +/- 3.0)%, (17.1 +/- 3.3)%, (32.7 +/- 1.9)% (P < 0.05, n = 12) and (56.0 +/- 2.4)% (P < 0.05, n = 13). The time constants of inactivation, recovery from inactivation and onset of inactivation were accelerated. SC did not change other channel kinetics (activation and deactivation). It is concluded that SC inhibited the transfected HERG channels by influencing the inactivation state, which is the probable anti-arrhythmic mechanism.
Assuntos
Alcaloides/farmacologia , Antiarrítmicos/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Rim/citologia , Cinética , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Plantas Medicinais/química , Sophora/químicaRESUMO
Because HERG potassium channel has important effects on both proarrhythmia and antiarrhythmia, we use immunofluorescence and Western blotting methods to detect the expression of HERG channel of HERG-HEK cells in different concentrations of matrine, oxymatrine and resveratrol. The findings showed that both matrine (1 micromol x L(-1) ) and oxymatrine ( 1micromol x L (-1) ) increased HERG channel expression ( n = 5, P < 0. 05 ) , while matrine (100 micromol x L(-1) ) decreased HERG channel expression ( n = 5, P < 0. 05), resveratrol didn't affect HERG channel expression. In conclusion, different concentrations of matrine and oxymatrine affect HERG channel expression, while there is no relationship between resveratrol and HERG channel expression. It provides a theoretical support for the safety and mechanism of anti-arrhythmic drugs.
Assuntos
Alcaloides/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Quinolizinas/farmacologia , Estilbenos/farmacologia , Antiarrítmicos/farmacologia , Western Blotting , Linhagem Celular , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/fisiologia , Imunofluorescência , Humanos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Plantas Medicinais/química , Resveratrol , Sophora/química , MatrinasRESUMO
MicroRNAs (miRNAs) are endogenous noncoding RNAs, about 22 nucleotides in length, that mediate post-transcriptional gene modulation by annealing to inexactly complementary sequences in the 3'-untranslated regions of target mRNAs. miRNA alterations are involved in the initiation and progression of human diseases. miRNA-expression profiling of human diseases has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. Recent evidence has suggested miRNAs as viable therapeutic targets for a wide range of human diseases. Several approaches were performed, the experimental examination of these techniques and the resultant findings not only indicate feasibility of interfering miRNA action in a gene-specific fashion but also may provide a new research tool for studying function of miRNAs. The new approaches also have the potential of becoming alternative gene therapy strategies.