Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EJNMMI Phys ; 10(1): 54, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698773

RESUMO

PURPOSE: Total-body PET imaging with ultra-high sensitivity makes high-temporal-resolution framing protocols possible for the first time, which allows to capture rapid tracer dynamic changes. However, whether protocols with higher number of temporal frames can justify the efficacy with substantially added computation burden for clinical application remains unclear. We have developed a kinetic modeling software package (uKinetics) with the advantage of practical, fast, and automatic workflow for dynamic total-body studies. The aim of this work is to verify the uKinetics with PMOD and to perform framing protocol optimization for the oncological Patlak parametric imaging. METHODS: Six different protocols with 100, 61, 48, 29, 19 and 12 temporal frames were applied to analyze 60-min dynamic 18F-FDG PET scans of 10 patients, respectively. Voxel-based Patlak analysis coupled with automatically extracted image-derived input function was applied to generate parametric images. Normal tissues and lesions were segmented manually or automatically to perform correlation analysis and Bland-Altman plots. Different protocols were compared with the protocol of 100 frames as reference. RESULTS: Minor differences were found between uKinetics and PMOD in the Patlak parametric imaging. Compared with the protocol with 100 frames, the relative difference of the input function and quantitative kinetic parameters remained low for protocols with at least 29 frames, but increased for the protocols with 19 and 12 frames. Significant difference of lesion Ki values was found between the protocols with 100 frames and 12 frames. CONCLUSION: uKinetics was proved providing equivalent oncological Patlak parametric imaging comparing to PMOD. Minor differences were found between protocols with 100 and 29 frames, which indicated that 29-frame protocol is sufficient and efficient for the oncological 18F-FDG Patlak applications, and the protocols with more frames are not needed. The protocol with 19 frames yielded acceptable results, while that with 12 frames is not recommended.

2.
Phys Med Biol ; 68(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36584395

RESUMO

Objective. In PET/CT imaging, CT is used for positron emission tomography (PET) attenuation correction (AC). CT artifacts or misalignment between PET and CT can cause AC artifacts and quantification errors in PET. Simultaneous reconstruction (MLAA) of PET activity (λ-MLAA) and attenuation (µ-MLAA) maps was proposed to solve those issues using the time-of-flight PET raw data only. However,λ-MLAA still suffers from quantification error as compared to reconstruction using the gold-standard CT-based attenuation map (µ-CT). Recently, a deep learning (DL)-based framework was proposed to improve MLAA by predictingµ-DL fromλ-MLAA andµ-MLAA using an image domain loss function (IM-loss). However, IM-loss does not directly measure the AC errors according to the PET attenuation physics. Our preliminary studies showed that an additional physics-based loss function can lead to more accurate PET AC. The main objective of this study is to optimize the attenuation map generation framework for clinical full-dose18F-FDG studies. We also investigate the effectiveness of the optimized network on predicting attenuation maps for synthetic low-dose oncological PET studies.Approach. We optimized the proposed DL framework by applying different preprocessing steps and hyperparameter optimization, including patch size, weights of the loss terms and number of angles in the projection-domain loss term. The optimization was performed based on 100 skull-to-toe18F-FDG PET/CT scans with minimal misalignment. The optimized framework was further evaluated on 85 clinical full-dose neck-to-thigh18F-FDG cancer datasets as well as synthetic low-dose studies with only 10% of the full-dose raw data.Main results. Clinical evaluation of tumor quantification as well as physics-based figure-of-merit metric evaluation validated the promising performance of our proposed method. For both full-dose and low-dose studies, the proposed framework achieved <1% error in tumor standardized uptake value measures.Significance. It is of great clinical interest to achieve CT-less PET reconstruction, especially for low-dose PET studies.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Imagem Multimodal/métodos , Processamento de Imagem Assistida por Computador/métodos , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética/métodos , Algoritmos , Tomografia por Emissão de Pósitrons/métodos
3.
Eur J Nucl Med Mol Imaging ; 49(9): 3086-3097, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35277742

RESUMO

A novel deep learning (DL)-based attenuation correction (AC) framework was applied to clinical whole-body oncology studies using 18F-FDG, 68 Ga-DOTATATE, and 18F-Fluciclovine. The framework used activity (λ-MLAA) and attenuation (µ-MLAA) maps estimated by the maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm as inputs to a modified U-net neural network with a novel imaging physics-based loss function to learn a CT-derived attenuation map (µ-CT). METHODS: Clinical whole-body PET/CT datasets of 18F-FDG (N = 113), 68 Ga-DOTATATE (N = 76), and 18F-Fluciclovine (N = 90) were used to train and test tracer-specific neural networks. For each tracer, forty subjects were used to train the neural network to predict attenuation maps (µ-DL). µ-DL and µ-MLAA were compared to the gold-standard µ-CT. PET images reconstructed using the OSEM algorithm with µ-DL (OSEMDL) and µ-MLAA (OSEMMLAA) were compared to the CT-based reconstruction (OSEMCT). Tumor regions of interest were segmented by two radiologists and tumor SUV and volume measures were reported, as well as evaluation using conventional image analysis metrics. RESULTS: µ-DL yielded high resolution and fine detail recovery of the attenuation map, which was superior in quality as compared to µ-MLAA in all metrics for all tracers. Using OSEMCT as the gold-standard, OSEMDL provided more accurate tumor quantification than OSEMMLAA for all three tracers, e.g., error in SUVmax for OSEMMLAA vs. OSEMDL: - 3.6 ± 4.4% vs. - 1.7 ± 4.5% for 18F-FDG (N = 152), - 4.3 ± 5.1% vs. 0.4 ± 2.8% for 68 Ga-DOTATATE (N = 70), and - 7.3 ± 2.9% vs. - 2.8 ± 2.3% for 18F-Fluciclovine (N = 44). OSEMDL also yielded more accurate tumor volume measures than OSEMMLAA, i.e., - 8.4 ± 14.5% (OSEMMLAA) vs. - 3.0 ± 15.0% for 18F-FDG, - 14.1 ± 19.7% vs. 1.8 ± 11.6% for 68 Ga-DOTATATE, and - 15.9 ± 9.1% vs. - 6.4 ± 6.4% for 18F-Fluciclovine. CONCLUSIONS: The proposed framework provides accurate and robust attenuation correction for whole-body 18F-FDG, 68 Ga-DOTATATE and 18F-Fluciclovine in tumor SUV measures as well as tumor volume estimation. The proposed method provides clinically equivalent quality as compared to CT in attenuation correction for the three tracers.


Assuntos
Aprendizado Profundo , Neoplasias , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Cintilografia , Compostos Radiofarmacêuticos
4.
Drug Alcohol Depend ; 227: 108920, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399137

RESUMO

BACKGROUND: Dopaminergic mechanisms that may underlie cannabis' reinforcing effects are not well elucidated in humans. This positron emission tomography (PET) imaging study used the dopamine D2/3 receptor antagonist [11C]raclopride and kinetic modelling testing for transient changes in radiotracer uptake to assess the striatal dopamine response to smoked cannabis in a preliminary sample. METHODS: PET emission data were acquired from regular cannabis users (n = 14; 7 M/7 F; 19-32 years old) over 90 min immediately after [11C]raclopride administration (584 ± 95 MBq) as bolus followed by constant infusion (Kbol = 105 min). Participants smoked a cannabis cigarette, using a paced puff protocol, 35 min after scan start. Plasma concentrations of Δ9-THC and metabolites and ratings of subjective "high" were collected during imaging. Striatal dopamine responses were assessed voxelwise with a kinetic model testing for transient reductions in [11C]raclopride binding, linear-parametric neurotransmitter PET (lp-ntPET) (cerebellum as a reference region). RESULTS: Cannabis smoking increased plasma Δ9-THC levels (peak: 0-10 min) and subjective high (peak: 0-30 min). Significant clusters (>16 voxels) modeled by transient reductions in [11C]raclopride binding were identified for all 12 analyzed scans. In total, 26 clusters of significant responses to cannabis were detected, of which 16 were located in the ventral striatum, including at least one ventral striatum cluster in 11 of the 12 analyzed scans. CONCLUSIONS: These preliminary data support the sensitivity of [11C]raclopride PET with analysis of transient changes in radiotracer uptake to detect cannabis smoking-induced dopamine responses. This approach shows future promise to further elucidate roles of mesolimbic dopaminergic signaling in chronic cannabis use. ClinicalTrials.gov Identifier: NCT02817698.


Assuntos
Cannabis , Fumar Maconha , Estriado Ventral , Adulto , Corpo Estriado/diagnóstico por imagem , Dopamina , Humanos , Tomografia por Emissão de Pósitrons , Racloprida , Adulto Jovem
5.
Med Phys ; 48(9): 5219-5231, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34287939

RESUMO

PURPOSE: The net uptake rate constant (Ki ) derived from dynamic imaging is considered the gold standard quantification index for FDG PET. In this study, we investigated the feasibility and assessed the clinical usefulness of generating Ki images for FDG PET using only two 5-min scans with population-based input function (PBIF). METHODS: Using a Siemens Biograph mCT, 10 subjects with solid lung nodules underwent a single-bed dynamic FDG PET scan and 13 subjects (five healthy and eight cancer patients) underwent a whole-body dynamic FDG PET scan in continuous-bed-motion mode. For each subject, a standard Ki image was generated using the complete 0-90 min dynamic data with Patlak analysis (t* = 20 min) and individual patient's input function, while a dual-time-point Ki image was generated from two 5-min scans based on the Patlak equations at early and late scans with the PBIF. Different start times for the early (ranging from 20 to 55 min with an increment of 5 min) and late (ranging from 50 to 85 min with an increment of 5 min) scans were investigated with the interval between scans being at least 30 min (36 protocols in total). The optimal dual-time-point protocols were then identified. Regions of interest (ROI) were drawn on nodules for the lung nodule subjects, and on tumors, cerebellum, and bone marrow for the whole-body-imaging subjects. Quantification accuracy was compared using the mean value of each ROI between standard Ki (gold standard) and dual-time-point Ki , as well as between standard Ki and relative standardized uptake value (SUV) change that is currently used in clinical practice. Correlation coefficients and least squares fits were calculated for each dual-time-point protocol and for each ROI. Then, the predefined criteria for identifying a reliable dual-time-point Ki estimation for each ROI were empirically determined as: (1) the squared correlation coefficient (R2 ) between standard Ki and dual-time-point Ki is larger than 0.9; (2) the absolute difference between the slope of the equality line (1.0) and that of the fitted line when plotting standard Ki versus dual-time-point Ki is smaller than 0.1; (3) the absolute value of the intercept of the fitted line when plotting standard Ki versus dual-time-point Ki normalized by the mean of the standard Ki across all subjects for each ROI is smaller than 10%. Using Williams' one-tailed t test, the correlation coefficient (R) between standard Ki and dual-time-point Ki was further compared with that between standard Ki and relative SUV change, for each dual-time-point protocol and for each ROI. RESULTS: Reliable dual-time-point Ki images were obtained for all the subjects using our proposed method. The percentage error introduced by the PBIF on the dual-time-point Ki estimation was smaller than 1% for all 36 protocols. Using the predefined criteria, reliable dual-time-point Ki estimation could be obtained in 25 of 36 protocols for nodules and in 34 of 36 protocols for tumors. A longer time interval between scans provided a more accurate Ki estimation in general. Using the protocol of 20-25 min plus 80-85 or 85-90 min, very high correlations were obtained between standard Ki and dual-time-point Ki (R2  = 0.994, 0.980, 0.971 and 0.925 for nodule, tumor, cerebellum, and bone marrow), with all the slope values with differences ≤0.033 from 1 and all the intercept values with differences ≤0.0006 mL/min/cm3 from 0. The corresponding correlations were much lower between standard Ki and relative SUV change (R2  = 0.673, 0.684, 0.065, 0.246). Dual-time-point Ki showed a significantly higher quantification accuracy with respect to standard Ki than relative SUV change for all the 36 protocols (p < 0.05 using Williams' one-tailed t test). CONCLUSIONS: Our proposed approach can obtain reliable Ki images and accurate Ki quantification from dual-time-point scans (5-min per scan), and provide significantly higher quantification accuracy than relative SUV change that is currently used in clinical practice.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Algoritmos , Humanos , Compostos Radiofarmacêuticos , Imagem Corporal Total
6.
Phys Med Biol ; 64(16): 165019, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31307019

RESUMO

Reducing radiation dose is important for PET imaging. However, reducing injection doses causes increased image noise and low signal-to-noise ratio (SNR), subsequently affecting diagnostic and quantitative accuracies. Deep learning methods have shown a great potential to reduce the noise and improve the SNR in low dose PET data. In this work, we comprehensively investigated the quantitative accuracy of small lung nodules, in addition to visual image quality, using deep learning based denoising methods for oncological PET imaging. We applied and optimized an advanced deep learning method based on the U-net architecture to predict the standard dose PET image from 10% low-dose PET data. We also investigated the effect of different network architectures, image dimensions, labels and inputs for deep learning methods with respect to both noise reduction performance and quantitative accuracy. Normalized mean square error (NMSE), SNR, and standard uptake value (SUV) bias of different nodule regions of interest (ROIs) were used for evaluation. Our results showed that U-net and GAN are superior to CAE with smaller SUVmean and SUVmax bias at the expense of inferior SNR. A fully 3D U-net has optimal quantitative performance compared to 2D and 2.5D U-net with less than 15% SUVmean bias for all the ten patients. U-net outperforms Residual U-net (r-U-net) in general with smaller NMSE, higher SNR and lower SUVmax bias. Fully 3D U-net is superior to several existing denoising methods, including Gaussian filter, anatomical-guided non-local mean (NLM) filter, and MAP reconstruction with Quadratic prior and relative difference prior, in terms of superior image quality and trade-off between noise and bias. Furthermore, incorporating aligned CT images has the potential to further improve the quantitative accuracy in multi-channel U-net. We found the optimal architectures and parameters of deep learning based methods are different for absolute quantitative accuracy and visual image quality. Our quantitative results demonstrated that fully 3D U-net can both effectively reduce image noise and control bias even for sub-centimeter small lung nodules when generating standard dose PET using 10% low count down-sampled data.


Assuntos
Aprendizado Profundo , Aumento da Imagem/métodos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Razão Sinal-Ruído , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Distribuição Normal
7.
Phys Med Biol ; 63(17): 175015, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30095083

RESUMO

Lung cancer mortality rate can be significantly reduced by up to 20% through routine low-dose computed tomography (LDCT) screening, which, however, has high sensitivity but low specificity, resulting in a high rate of false-positive nodules. Combining PET with CT may provide more accurate diagnosis for indeterminate screening-detected nodules. In this work, we investigated low-dose dynamic 18F-FDG PET in discrimination between benign and malignant nodules using a virtual clinical trial based on patient study with ground truth. Six patients with initial LDCT screening-detected lung nodules received 90 min single-bed PET scans following a 10 mCi FDG injection. Low-dose static and dynamic images were generated from under-sampled list-mode data at various count levels (100%, 50%, 10%, 5%, and 1%). A virtual clinical trial was performed by adding nodule population variability, measurement noise, and static PET acquisition start time variability to the time activity curves (TACs) of the patient data. We used receiver operating characteristic (ROC) analysis to estimate the classification capability of standardized uptake value (SUV) and net uptake constant K i from their simulated benign and malignant distributions. Various scan durations and start times (t *) were investigated in dynamic Patlak analysis to optimize simplified acquisition protocols with a population-based input function (PBIF). The area under curve (AUC) of ROC analysis was higher with increased scan duration and earlier t *. Highly similar results were obtained using PBIF to those using image-derived input function (IDIF). The AUC value for K i using optimized t * and scan duration with 10% dose was higher than that for SUV with 100% dose. Our results suggest that dynamic PET with as little as 1 mCi FDG could provide discrimination between benign and malignant lung nodules with higher than 90% sensitivity and specificity for patients similar to the pilot and simulated population in this study, with LDCT screening-detected indeterminate lung nodules.


Assuntos
Algoritmos , Fluordesoxiglucose F18/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Nódulo Pulmonar Solitário/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Doses de Radiação , Nódulo Pulmonar Solitário/metabolismo
8.
Eur J Med Chem ; 149: 1-9, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29486369

RESUMO

Based on our discovered novel lead compound 1 through phenotypic drug discovery (PDD) approaches, systematic structural optimization was performed. A series of 2-allylthio-5-amino substituted benzoquinones were synthesized and evaluated for their in-vitro anticancer activities against human prostate cancer cell line PC3. The compound 7a was found inhibit the growth of PC3 with an IC50 of 0.22 µM, which is over 20-fold improvement compared to lead compound 1. It is noteworthy that compound 7a also showed potent anti-proliferation activity toward a panel of cancer cells with relatively less cytotoxicity to nonmalignant cell, as well as good water solubility.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Desenho de Fármacos , Antineoplásicos/química , Benzoquinonas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Solubilidade , Relação Estrutura-Atividade
9.
J Nucl Med ; 59(9): 1480-1486, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29439015

RESUMO

Respiratory motion degrades the detection and quantification capabilities of PET/CT imaging. Moreover, mismatch between a fast helical CT image and a time-averaged PET image due to respiratory motion results in additional attenuation correction artifacts and inaccurate localization. Current motion compensation approaches typically have 3 limitations: the mismatch among respiration-gated PET images and the CT attenuation correction (CTAC) map can introduce artifacts in the gated PET reconstructions that can subsequently affect the accuracy of the motion estimation; sinogram-based correction approaches do not correct for intragate motion due to intracycle and intercycle breathing variations; and the mismatch between the PET motion compensation reference gate and the CT image can cause an additional CT-mismatch artifact. In this study, we established a motion correction framework to address these limitations. Methods: In the proposed framework, the combined emission-transmission reconstruction algorithm was used for phase-matched gated PET reconstructions to facilitate the motion model building. An event-by-event nonrigid respiratory motion compensation method with correlations between internal organ motion and external respiratory signals was used to correct both intracycle and intercycle breathing variations. The PET reference gate was automatically determined by a newly proposed CT-matching algorithm. We applied the new framework to 13 human datasets with 3 different radiotracers and 323 lesions and compared its performance with CTAC and non-attenuation correction (NAC) approaches. Validation using 4-dimensional CT was performed for one lung cancer dataset. Results: For the 10 18F-FDG studies, the proposed method outperformed (P < 0.006) both the CTAC and the NAC methods in terms of region-of-interest-based SUVmean, SUVmax, and SUV ratio improvements over no motion correction (SUVmean: 19.9% vs. 14.0% vs. 13.2%; SUVmax: 15.5% vs. 10.8% vs. 10.6%; SUV ratio: 24.1% vs. 17.6% vs. 16.2%, for the proposed, CTAC, and NAC methods, respectively). The proposed method increased SUV ratios over no motion correction for 94.4% of lesions, compared with 84.8% and 86.4% using the CTAC and NAC methods, respectively. For the 2 18F-fluoropropyl-(+)-dihydrotetrabenazine studies, the proposed method reduced the CT-mismatch artifacts in the lower lung where the CTAC approach failed and maintained the quantification accuracy of bone marrow where the NAC approach failed. For the 18F-FMISO study, the proposed method outperformed both the CTAC and the NAC methods in terms of motion estimation accuracy at 2 lung lesion locations. Conclusion: The proposed PET/CT respiratory event-by-event motion-correction framework with motion information derived from matched attenuation-corrected PET data provides image quality superior to that of the CTAC and NAC methods for multiple tracers.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Movimento , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Respiração , Técnicas de Imagem de Sincronização Respiratória , Tomografia Computadorizada Quadridimensional , Humanos
10.
Phys Med Biol ; 60(16): 6323-54, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26237154

RESUMO

Contrast-enhanced dual energy digital breast tomosynthesis (CE-DE-DBT) is designed to image iodinated masses while suppressing breast anatomical background. Scatter is a problem, especially for high energy acquisition, in that it causes severe cupping artifact and iodine quantitation errors. We propose a patient specific scatter correction (SC) algorithm for CE-DE-DBT. The empirical algorithm works by interpolating scatter data outside the breast shadow into an estimate within the breast shadow. The interpolated estimate is further improved by operations that use an easily obtainable (from phantoms) table of scatter-to-primary-ratios (SPR)--a single SPR value for each breast thickness and acquisition angle. We validated our SC algorithm for two breast emulating phantoms by comparing SPR from our SC algorithm to that measured using a beam-passing pinhole array plate. The error in our SC computed SPR, averaged over acquisition angle and image location, was about 5%, with slightly worse errors for thicker phantoms. The SC projection data, reconstructed using OS-SART, showed a large degree of decupping. We also observed that SC removed the dependence of iodine quantitation on phantom thickness. We applied the SC algorithm to a CE-DE-mammographic patient image with a biopsy confirmed tumor at the breast periphery. In the image without SC, the contrast enhanced tumor was masked by the cupping artifact. With our SC, the tumor was easily visible. An interpolation-based SC was proposed by (Siewerdsen et al 2006 Med. Phys. 33 187-97) for cone-beam CT (CBCT), but our algorithm and application differ in several respects. Other relevant SC techniques include Monte-Carlo and convolution-based methods for CBCT, storage of a precomputed library of scatter maps for DBT, and patient acquisition with a beam-passing pinhole array for breast CT. Our SC algorithm can be accomplished in clinically acceptable times, requires no additional imaging hardware or extra patient dose and is easily transportable between sites.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Mamografia/métodos , Espalhamento de Radiação , Feminino , Humanos
11.
Phys Med Biol ; 59(3): 679-96, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24442348

RESUMO

In SPECT, the collimator is a crucial element in controlling image quality. We take a task performance approach to collimator performance evaluation in which an ideal observer is applied to the raw camera data without regard to the subsequent reconstruction stage. The clinical context of our collimator study is one of searching for and detecting neuroendocrine tumor metastases in the liver as seen in In-111 Octreotide SPECT. Our task involves detection and localization of a signal and thus differs from the conventionally used detection-only task. The scalar task performance metric is ALROC, the area under the localization receiver operating characteristic curve. Since In-111 emits photons at both 171 and 245 keV, the higher energy emissions can contribute significant septal scatter and penetration. Our collimator evaluations address a question previously considered by Mähler et al (2012 IEEE Trans. Nucl. Sci. 59 47­53) who used a different methodology: does allowing a limited amount of septal scatter and penetration yield improved task performance? We used simulation methods to evaluate five parallel-hole collimators. The collimators had roughly equal geometric sensitivity and resolution but a range of contributions from septal effects leading to variations in total sensitivity and resolution. We found that the best performance was obtained with a collimator that allowed a moderate amount of septal scatter and penetration.


Assuntos
Radioisótopos de Índio , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Variações Dependentes do Observador , Octreotida , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA