Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 5(6): 100852, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38409783

RESUMO

Climate change is resulting in more frequent and rapidly changing temperatures at both extremes that severely affect the growth and production of plants, particularly crops. Oxidative stress caused by high temperatures is one of the most damaging factors for plants. However, the role of hydrogen peroxide (H2O2) in modulating plant thermotolerance is largely unknown, and the regulation of photorespiration essential for C3 species remains to be fully clarified. Here, we report that heat stress promotes H2O2 accumulation in chloroplasts and that H2O2 stimulates sulfenylation of the chloroplast-localized photorespiratory enzyme 2-phosphoglycolate phosphatase 1 (PGLP1) at cysteine 86, inhibiting its activity and promoting the accumulation of the toxic metabolite 2-phosphoglycolate. We also demonstrate that PGLP1 has a positive function in plant thermotolerance, as PGLP1 antisense lines have greater heat sensitivity and PGLP1-overexpressing plants have higher heat-stress tolerance than the wild type. Together, our results demonstrate that heat-induced H2O2 in chloroplasts sulfenylates and inhibits PGLP1 to modulate plant thermotolerance. Furthermore, targeting CATALASE2 to chloroplasts can largely prevent the heat-induced overaccumulation of H2O2 and the sulfenylation of PGLP1, thus conferring thermotolerance without a plant growth penalty. These findings reveal that heat-induced H2O2 in chloroplasts is important for heat-caused plant damage.


Assuntos
Peróxido de Hidrogênio , Termotolerância , Peróxido de Hidrogênio/metabolismo , Termotolerância/efeitos dos fármacos , Termotolerância/genética , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Temperatura Alta , Resposta ao Choque Térmico/efeitos dos fármacos
2.
Plant J ; 114(6): 1369-1384, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948886

RESUMO

Hydrogen sulfide (H2 S) promotes plant tolerance against various environmental cues, and d-cysteine desulfhydrase (DCD) is an enzymatic source of H2 S to enhance abiotic stress resistance. However, the role of DCD-mediated H2 S production in root growth under abiotic stress remains to be further elucidated. Here, we report that DCD-mediated H2 S production alleviates osmotic stress-mediated root growth inhibition by promoting auxin homeostasis. Osmotic stress up-regulated DCD gene transcript and DCD protein levels and thus H2 S production in roots. When subjected to osmotic stress, a dcd mutant showed more severe root growth inhibition, whereas the transgenic lines DCDox overexpressing DCD exhibited less sensitivity to osmotic stress in terms of longer root compared to the wild-type. Moreover, osmotic stress inhibited root growth through repressing auxin signaling, whereas H2 S treatment significantly alleviated osmotic stress-mediated inhibition of auxin. Under osmotic stress, auxin accumulation was increased in DCDox but decreased in dcd mutant. H2 S promoted auxin biosynthesis gene expression and auxin efflux carrier PIN-FORMED 1 (PIN1) protein level under osmotic stress. Taken together, our results reveal that mannitol-induced DCD and H2 S in roots promote auxin homeostasis, contributing to alleviating the inhibition of root growth under osmotic stress.


Assuntos
Proteínas de Arabidopsis , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Pressão Osmótica , Homeostase , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
Plant Cell ; 35(5): 1593-1616, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36695476

RESUMO

High salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74. We also show that MG is a key factor limiting the plant growth, as a decrease in MG levels completely rescued the stunted growth and repressed salt stress tolerance of the pdtpi mutant. Furthermore, targeting CATALASE 2 into chloroplasts to prevent salt-induced overaccumulation of H2O2 conferred salt stress tolerance, revealing a role for chloroplastic H2O2 in salt-caused plant damage. In addition, we demonstrate that the H2O2-mediated accumulation of MG in turn induces H2O2 production, thus forming a regulatory loop that further inhibits the pdTPI activity in salt-stressed plants. Our findings, therefore, illustrate how salt stress induces MG production to inhibit the plant growth.


Assuntos
Peróxido de Hidrogênio , Aldeído Pirúvico , Peróxido de Hidrogênio/metabolismo , Aldeído Pirúvico/metabolismo , Estresse Salino , Estresse Oxidativo , Plantas/metabolismo , Cloroplastos/metabolismo , Estresse Fisiológico
4.
Dev Cell ; 57(15): 1883-1898.e5, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35809562

RESUMO

H2O2 affects the expression of genes that are involved in plant responses to diverse environmental stresses; however, the underlying mechanisms remain elusive. Here, we demonstrate that H2O2 enhances plant freezing tolerance through its effect on a protein product of low expression of osmotically responsive genes2 (LOS2). LOS2 is translated into a major product, cytosolic enolase2 (ENO2), and sometimes an alternative product, the transcription repressor c-Myc-binding protein (MBP-1). ENO2, but not MBP-1, promotes cold tolerance by binding the promoter of C-repeat/DRE binding factor1 (CBF1), a central transcription factor in plant cold signaling, thus activating its expression. Overexpression of CBF1 restores freezing sensitivity of a LOS2 loss-of-function mutant. Furthermore, cold-induced H2O2 increases nuclear import and transcriptional binding activity of ENO2 by sulfenylating cysteine 408 and thereby promotes its oligomerization. Collectively, our results illustrate how H2O2 activates plant cold responses by sulfenylating ENO2 and promoting its oligomerization, leading to enhanced nuclear translocation and transcriptional activation of CBF1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Congelamento , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Mol Plant ; 15(6): 973-990, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35488429

RESUMO

To adapt to changing environments, plants have evolved elaborate regulatory mechanisms balancing their growth with stress responses. It is currently unclear whether and how the tryptophan (Trp), the growth-related hormone auxin, and the stress hormone abscisic acid (ABA) are coordinated in this trade-off. Here, we show that tryptophan synthase ß subunit 1 (TSB1) is involved in the coordination of Trp and ABA, thereby affecting plant growth and abiotic stress responses. Plants experiencing high salinity or drought display reduced TSB1 expression, resulting in decreased Trp and auxin accumulation and thus reduced growth. In comparison with the wild type, amiR-TSB1 lines and TSB1 mutants exhibited repressed growth under non-stress conditions but had enhanced ABA accumulation and stress tolerance when subjected to salt or drought stress. Furthermore, we found that TSB1 interacts with and inhibits ß-glucosidase 1 (BG1), which hydrolyses glucose-conjugated ABA into active ABA. Mutation of BG1 in the amiR-TSB1 lines compromised their increased ABA accumulation and enhanced stress tolerance. Moreover, stress-induced H2O2 disrupted the interaction between TSB1 and BG1 by sulfenylating cysteine-308 of TSB1, relieving the TSB1-mediated inhibition of BG1 activity. Taken together, we revealed that TSB1 serves as a key coordinator of plant growth and stress responses by balancing Trp and ABA homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Triptofano Sintase , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Homeostase , Hormônios/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Triptofano/metabolismo , Triptofano Sintase/genética , Triptofano Sintase/metabolismo
6.
Plant Physiol ; 183(1): 345-357, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179630

RESUMO

Hydrogen sulfide (H2S), a plant gasotransmitter, functions in the plant response to cadmium (Cd) stress, implying a role for cysteine desulfhydrase in producing H2S in this process. Whether d -CYSTEINE DESULFHYDRASE (DCD) acts in the plant Cd response remains to be identified, and if it does, how DCD is regulated in this process is also unknown. Here, we report that DCD-mediated H2S production enhances plant Cd tolerance in Arabidopsis (Arabidopsis thaliana). When subjected to Cd stress, a dcd mutant accumulated more Cd and reactive oxygen species and showed increased Cd sensitivity, whereas transgenic lines overexpressing DCD had decreased Cd and reactive oxygen species levels and were more tolerant to Cd stress compared with wild-type plants. Furthermore, the expression of DCD was stimulated by Cd stress, and this up-regulation was mediated by a Cd-induced transcription factor, WRKY13, which bound to the DCD promoter. Consistently, the higher Cd sensitivity of the wrky13-3 mutant was rescued by the overexpression of DCD Together, our results demonstrate that Cd-induced WRKY13 activates DCD expression to increase the production of H2S, leading to higher Cd tolerance in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cádmio/farmacologia , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cistationina gama-Liase/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética
7.
New Phytol ; 225(1): 297-309, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31403703

RESUMO

Lateral roots (LRs), which form in the plant postembryonically, determine the architecture of the root system. While negative regulatory factors that inhibit LR formation and are counteracted by auxin exist in the pericycle, these factors have not been characterised. Here, we report that SHI-RELATED SEQUENCE5 (SRS5) is an intrinsic negative regulator of LR formation and that auxin signalling abolishes this inhibitory effect of SRS5. Whereas LR primordia (LRPs) and LRs were fewer and less dense in SRS5ox and Pro35S:SRS5-GFP plants than in the wild-type, they were more abundant and denser in the srs5-2 loss-of-function mutant. SRS5 inhibited LR formation by directly downregulating the expression of LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) and LBD29. Auxin repressed SRS5 expression. Auxin-mediated repression of SRS5 expression was not observed in the arf7-1 arf19-1 double mutant, likely because ARF7 and ARF19 bind to the promoter of SRS5 and inhibit its expression in response to auxin. Taken together, our data reveal that SRS5 negatively regulates LR formation by repressing the expression of LBD16 and LBD29 and that auxin releases this inhibitory effect through ARF7 and ARF19.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Transativadores/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Estradiol/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Modelos Biológicos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Regiões Promotoras Genéticas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Transativadores/genética
8.
Plant Cell Rep ; 35(5): 1071-80, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26883224

RESUMO

KEY MESSAGE: Arabidopsis CK2 α4 subunit regulates the primary root and hypocotyl elongation, lateral root formation, cotyledon expansion, rosette leaf initiation and growth, flowering, and anthocyanin biosynthesis. Casein kinase 2 (CK2) is a conserved tetrameric kinase composed of two α and two ß subunits. The inhibition of CK2 activity usually results in severe developmental deficiency. Four genes (CKA1-CKA4) encode CK2 α subunit in Arabidopsis. Single mutations of CKA1, CKA2, and CKA3 do not affect the normal growth of Arabidopsis, while the cka1 cka2 cka3 triple mutants are defective in cotyledon and hypocotyl growth, lateral root development, and flowering. The inhibition of CKA4 expression in cka1 cka2 cka3 background further reduces the number of lateral roots and delays the flowering time. Here, we report the characterization of a novel knockout mutant of CKA4, which exhibits various developmental defects including reduced primary root and hypocotyl elongation, increased lateral root density, delayed cotyledon expansion, retarded rosette leaf initiation and growth, and late flowering. The examination of the cellular basis for abnormal root development of this mutant revealed reduced root meristem cells with enhanced RETINOBLASTOMA-RELATED (RBR) expression that promotes cell differentiation in root meristem. Moreover, this cka4-2 mutant accumulates higher anthocyanin in the aerial part and shows an increased expression of anthocyanin biosynthetic genes, suggesting a novel role of CK2 in modulating anthocyanin biosynthesis. In addition, the complementation test using primary root elongation assay as a sample confirms that the changed phenotypes of this cka4-2 mutant are due to the lack of CKA4. Taken together, this study reveals an essential role of CK2 α4 subunit in multiple developmental processes in Arabidopsis.


Assuntos
Antocianinas/metabolismo , Arabidopsis/enzimologia , Caseína Quinase II/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Caseína Quinase II/genética , Cotilédone/citologia , Cotilédone/enzimologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Flores/citologia , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Genes Reporter , Hipocótilo/citologia , Hipocótilo/enzimologia , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Mutação , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plântula/citologia , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Alinhamento de Sequência
9.
Plant Physiol ; 168(4): 1777-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26109425

RESUMO

Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Álcalis/química , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Meristema/genética , Meristema/metabolismo , Microscopia Confocal , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nitrato de Prata/farmacologia , Solo/química , Estresse Fisiológico/efeitos dos fármacos
10.
Plant Cell Environ ; 37(1): 175-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23738953

RESUMO

Auxin and H2 O2 play vital roles in plant development and environmental responses; however, it is unclear whether and how H2 O2 modulates auxin levels. Here, we investigate this question using cat2-1 mutant, which exhibits reduced catalase activity and accumulates high levels of H2 O2 under photorespiratory conditions. At a light intensity of 150 µmol m(-2) s(-1) , the mutant exhibited up-curled leaves that have increased H2 O2 contents and decreased auxin levels. At low light intensities (30 µmol m(-2) s(-1)), the leaves of the mutant were normal, but exhibited reduced H2 O2 contents and elevated auxin levels. These findings suggest that H2 O2 modulates auxin levels. When auxin was directly applied to cat2-1 leaves, the up-curled leaves curled downwards. In addition, transformation of cat2-1 plants with pCAT2:iaaM, which increases auxin levels, rescued the hyponastic leaf phenotype. Using qRT-PCR, we demonstrated that the transcription of auxin synthesis-related genes and of genes that regulate leaf curvature is suppressed in cat2-1. Furthermore, application of glutathione rescued the up-curled leaves of cat2-1 and increased auxin levels, but did not change H2 O2 levels. Thus, the hyponastic leaves of cat2-1 reveal crosstalk between H2 O2 and auxin signalling that is mediated by changes in glutathione redox status.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Genes Reporter , Glutationa/metabolismo , Ácidos Indolacéticos/análise , Luz , Mutação , Oxirredução , Fenótipo , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas
11.
Planta ; 224(4): 952-62, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16575595

RESUMO

The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, we compared the gene expression during seed development between two lines of Brassica napus with a 10% difference in oil content. We isolated the immature seeds 15 and 25 days after flowering at periods preceding and including the major accumulation of storage oils and proteins. The differentially expressed gene clones between the two rape lines were isolated by subtractive suppression hybridization (SSH). All SSH clones were arrayed and screened by dot blot hybridization, followed by RT-PCR analysis for selected clones. A total of 217 cDNA clones corresponding to 30 genes were found to have a high expression in seeds with high oil content. Six genes were highly expressed in seeds with low oil content. Northern blot and enzyme activity analysis demonstrated a change in expression pattern of several genes. The results provide information on gene-encoding factors responsible for the regulation of oil synthesis. The possible role of these genes in seeds is discussed. The genes in this study may be suitable as novel targets for genetic improvement of seed oil content and may also provide molecular markers for studies of rape breeding.


Assuntos
Brassica napus/genética , Óleos de Plantas/metabolismo , Sementes/genética , Brassica napus/metabolismo , Etiquetas de Sequências Expressas , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , RNA Mensageiro , Sementes/enzimologia , Sementes/metabolismo
12.
Cell Res ; 15(8): 604-12, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16117850

RESUMO

By screening tobacco cDNA library with MCK1 as a probe, we isolated a cDNA clone NtCPK5 (accession number AY971376), which encodes a typical calcium-dependent protein kinase. Sequence analyses indicated that NtCPK5 is related to both CPKs and CRKs superfamilies and has all of the three conserved domains of CPKs. The biochemical activity of NtCPK5 was calcium-dependent. NtCPK5 had Vmax and Km of 526 nmol/min/mg and 210 microg/ml respectively with calf thymus histone (fraction III, abbreviated to histone IIIs) as substrate. For substrate syntide-2, NtCPK5 showed a higher Vmax of 2008 nmol/min/mg and a lower Km of 30 microM. The K0.5 of calcium activation was 0.04 microM or 0.06 microM for histone IIIs or syntide-2 respectively. The putative myristoylation and palmitoylation consensus sequence of NtCPK5 suggests that it could be a membrane-anchoring protein. Indeed, our transient expression experiments with wild type and mutant forms of NtCPK5/GFP fusion proteins showed that NtCPK5 was localized to the plasma membrane of onion epidermal cells and that the localization required the N-terminal acylation sites of NtCPK5/GFP. Taking together, our data have demonstrated the biochemical characteristics of a novel protein NtCPK5 and its subcellular localization as a membrane-anchoring protein.


Assuntos
Nicotiana/citologia , Nicotiana/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Células Cultivadas , Clonagem Molecular , Cinética , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/genética , Transporte Proteico , Proteínas Recombinantes de Fusão , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Nicotiana/metabolismo
13.
Biochim Biophys Acta ; 1729(3): 174-85, 2005 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-15964083

RESUMO

A cDNA clone, encoding calcium (Ca2+)-dependent protein kinase (CDPK or CPK), was isolated from tobacco (Nicotiana tabacum). The full-length cDNA of 2360 bp contains an open reading frame for NtCPK4 consisting of 572 amino acid residues. Sequence alignment indicated that NtCPK4 shared high similarities with other CPKs and some CPK-related protein kinases (CRKs). Biochemical analyses showed that NtCPK4 phosphorylated itself and calf thymus histones fraction III-S (histone III-S) in a calcium-dependent manner, and the K0.5 of calcium activation was 0.29 microM or 0.25 microM with histone III-S or syntide-2 as substrates, respectively. The Vmax and Km were 588 nmol min-1 mg-1 and 176 microg ml-1, respectively, when histone III-S was used as substrate, while they were 2415 nmol min-1 mg-1 and 58 microM, respectively, with syntide-2 as substrate. In addition, the phosphorylation of NtCPK4 occurred on threonine residue, as shown by capillary electrophoresis analyses. All of these data demonstrated that NtCPK4 was a serine/threonine protein kinase. NtCPK4 as a low copy gene was expressed in all tested organs including the root, leaf, stem, and flower of tobacco, while its expression was temporally and spatially modulated in both productive and vegetative tissues during tobacco growth and development. NtCPK4 expression was also increased in response to the treatment of gibberellin or NaCl. Our study suggested that NtCPK4 might play vital roles in plant development and responses to environmental stimuli.


Assuntos
Regulação Enzimológica da Expressão Gênica , Nicotiana/enzimologia , Nicotiana/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cálcio/metabolismo , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Histonas/metabolismo , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia
14.
Artigo em Chinês | MEDLINE | ID: mdl-15961906

RESUMO

Two different calmodulin-binding protein kinase cDNAs (NtCBK1/2) have been isolated from tobacco. To understand the CBK protein activity regulation, we compared the activity regulation of NtCBK1 and NtCBK2 by pH, Mg(2+) concentration and Na(+) concentration. We found the autophosphorylation of NtCBK1/2 reached the maximum in pH 7.5 and 8 respectively; Mg(2+) and Na(+) shown different effects on the activity of NtCBKs, high and low Mg(2+) concentrations both inhibited the activity of NtCBKs, but Na+ had little effect on the kinase activity. In addition, to obtain further insight about the physiological roles of individual NtCBKs, we detected the expression profiles of CBKs. The results revealed different patterns of expression of NtCBK1 and NtCBK2. Both are largely expressed in leaf and flower; but in stem and root, NtCBK1 gene had stronger expression than NtCBK2. NtCBK2 expression was induced by GA treatment, while NtCBK1 expression remained unchanged under GA treatment. Expression of both NtCBK1 and NtCBK2 increased in response to salt stress, the former to a greater extent, and both expressions did not change under high/low temperature, drought, NAA and ABA treatments.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/metabolismo , Northern Blotting , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Isoenzimas/genética , Isoenzimas/metabolismo , Magnésio/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Plântula/efeitos dos fármacos , Plântula/genética , Sódio/farmacologia , Temperatura , Nicotiana/efeitos dos fármacos , Nicotiana/genética
15.
J Chromatogr A ; 1049(1-2): 237-42, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15499940

RESUMO

A sensitive analytical protocol for determining phosphoamino acids using capillary electrophoresis coupled with laser-induced fluorescence detection has been developed. The technique involved the derivatization of the phosphoamino acids with fluorescent reagent 5-(4,6-dichloro-s-triazin-2-ylamino)fluorescein (DTAF) and the analyses of the derivatives by micellar electrokinetic chromatography with laser induced fluorescence detection (MEKC-LIF). Different variables that affect derivatization (DTAF concentration, pH, temperature and time) and separation (kind of surfactant, pH and concentration of buffer) were studied. The baseline separation of three phosphoamino acids could be obtained in less than 11 min with good reproducibility. There was a linear relationship between the peak area of the analyte and its concentration, with correlation coefficients in the range of 0.9979-0.9997. The concentration detection limits (signal to noise = 3) with respect to each single phosphoamino acid were in the range of 0.5-1 nM. The developed method was successfully applied for the determination of phosphoamino acids in the hydrolyzed phosphorylated protein samples.


Assuntos
Fosfoaminoácidos/análise , Soluções Tampão , Calibragem , Cromatografia Capilar Eletrocinética Micelar , Fluoresceínas , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Hidrólise , Indicadores e Reagentes , Hidrolisados de Proteína/análise , Proteínas Quinases/química , Reprodutibilidade dos Testes , Nicotiana/química
16.
Plant Physiol ; 135(3): 1280-93, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15247371

RESUMO

A cDNA encoding a calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CaMK) from tobacco (Nicotiana tabacum), NtCaMK1, was isolated by protein-protein interaction-based screening of a cDNA expression library using 35S-labeled CaM as a probe. The genomic sequence is about 24.6 kb, with 21 exons, and the full-length cDNA is 4.8 kb, with an open reading frame for NtCaMK1 consisting of 1,415 amino acid residues. NtCaMK1 has all 11 subdomains of a kinase catalytic domain, lacks EF hands for Ca2+-binding, and is structurally similar to other CaMKs in mammal systems. Biochemical analyses have identified NtCaMK1 as a Ca2+/CaMK since NtCaMK1 phosphorylated itself and histone IIIs as substrate only in the presence of Ca2+/CaM with a Km of 44.5 microm and a Vmax of 416.2 nm min(-1) mg(-1). Kinetic analysis showed that the kinase not previously autophosphorylated had a Km for the synthetic peptide syntide-2 of 22.1 microm and a Vmax of 644.1 nm min(-1) mg(-1) when assayed in the presence of Ca2+/CaM. Once the autophosphorylation of NtCaMK1 was initiated, the phosphorylated form displayed Ca2+/CaM-independent behavior, as many other CaMKs do. Analysis of the CaM-binding domain (CaMBD) in NtCaMK1 with truncated and site-directed mutated forms defined a stretch of 20 amino acid residues at positions 913 to 932 as the CaMBD with high CaM affinity (Kd = 5 nm). This CaMBD was classified as a 1-8-14 motif. The activation of NtCaMK1 was differentially regulated by three tobacco CaM isoforms (NtCaM1, NtCaM3, and NtCaM13). While NtCaM1 and NtCaM13 activated NtCaMK1 effectively, NtCaM3 did not activate the kinase.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Nicotiana/enzimologia , Nicotiana/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , DNA Complementar/genética , Biblioteca Gênica , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
17.
J Biol Chem ; 279(30): 31483-94, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15138273

RESUMO

A tobacco calcium/calmodulin-binding protein kinase (NtCBK1) was isolated and identified. The predicted NtCBK1 protein has 599 amino acids, an N-terminal kinase domain, and shares high homology with other calmodulin (CaM)-related kinases. Whereas NtCBK1 phosphorylates itself and substrates such as histone IIIS and syntide-2 in the absence of CaM, its kinase activity can be stimulated by tobacco CaMs. However, unlike another tobacco protein kinase designated NtCBK2, NtCBK1 was not differentially regulated by the different CaM isoforms tested. The CaM-binding domain of NtCBK1 was located between amino acids 436 and 455, and this domain was shown to be necessary for CaM modulation of kinase activity. RNA in situ hybridization showed that NtCBK1 was highly regulated in the transition to flowering. Whereas NtCBK1 mRNA was accumulated in the shoot apical meristem during vegetative growth, its expression was dramatically decreased in the shoot apical meristem after floral determination, and in young flower primordia. The expression of NtCBK1 was up-regulated to high levels in floral organ primordia. Fluctuations in NtCBK1 expression were verified by analysis of tobacco plants expressing green fluorescent protein under the control of the NtCBK1 promoter, suggesting a role of NtCBK1 in the transition to flowering. This conclusion was confirmed by overexpressing NtCBK1 in transgenic tobacco plants, where maintenance of high levels of NtCBK1 in the shoot apical meristem delayed the switch to flowering and extended the vegetative phase of growth. Further work indicated that overexpression of NtCBK1 in transgenic tobacco did not affect the expression of NFL, a tobacco homologue of the LFY gene that controls meristem initiation and floral structure in tobacco. In addition, the promotion of tobacco flowering time by DNA demethylation cannot be blocked by the overexpression of NtCBK1.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Nicotiana/enzimologia , Nicotiana/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Domínio Catalítico/genética , Clonagem Molecular , DNA Complementar/genética , DNA de Plantas/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Genes de Plantas , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Dados de Sequência Molecular , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Nicotiana/genética
18.
Biochem J ; 376(Pt 1): 291-302, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12911329

RESUMO

A calcium (Ca2+)/calmodulin (CaM)-binding protein kinase (CBK) from tobacco (Nicotiana tabaccum ), NtCBK2, has been characterized molecularly and biochemically. NtCBK2 has all 11 conserved subdomains of the kinase-catalytic domain and a CaM-binding site as shown by other kinases, including Ca2+-dependent protein kinase and chimaeric Ca2+/CaM-dependent protein kinases. However, this kinase does not contain an EF-hand motif for Ca2+ binding, and its activity was not regulated by Ca2+. Whereas NtCBK2 phosphorylated both itself and other substrates, such as histone IIIS and syntide-2, in a Ca2+/CaM-independent manner, as also shown by OsCBK, a CaM-binding protein kinase from rice (Oryza sativa ), the kinase activity of NtCBK2 was greatly stimulated by Ca2+/CaM, whereas that of OsCBK was not. By molecular dissection analyses, the CaM-binding domain of NtCBK2 has been localized in a stretch of 30 amino acid residues at residue positions 431-460 as a 1-5-10 protein motif. Three tobacco CaM isoforms (NtCaM1, NtCaM3 and NtCaM13) used in the present study have been shown to bind to NtCBK2, but with different dissociation constants ( K(d)s), as follows: NtCaM1, 55.7 nM; NtCaM3, 25.4 nM; and NtCaM13, 19.8 nM, indicating that NtCBK2 has a higher affinity for NtCaM3 and NtCaM13 than for NtCaM1. The enzymic activity of NtCBK2 was also modulated differently by various CaM isoforms. Whereas the phosphorylation activity of NtCBK2 was shown by assay to be enhanced only approximately 2-3-fold by the presence of NtCaM1, the activity could be amplified up to 8-9-fold by NtCaM3 or 10-11-fold by NtCaM13, suggesting that NtCaM3 and NtCaM13 are better activators than NtCaM1 for NtCBK2.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Calmodulina/metabolismo , Nicotiana/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/genética , Clonagem Molecular , Dados de Sequência Molecular , Fosfoaminoácidos/análise , Fosforilação , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência
19.
J Chromatogr A ; 998(1-2): 213-9, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12862385

RESUMO

Micellar electrokinetic capillary chromatography with laser-induced fluorescence detection was applied to the determination of biogenic amines including putrescine, histamine, cadaverine, tyramine, tryptamine, 2-phenylethylamine, spermine, and spermidine. A fluorogenic derivatization reagent, 3-(2-furoyl)quinoline-2-carboxaldehyde, was successfully used to fluorescently label these biogenic amines. Different variables that affect derivatization (derivatization reagent concentration, reaction time and temperature) and separation (buffer concentration, addition of organic modifiers and sodium deoxycholate concentration) were studied. The linearities within concentration ranges of up to two orders of magnitudes were achieved for those species with correlation coefficients from 0.9967 to 0.9992. The detection limits (signal to noise = 3) of biogenic amines can reach 5 x 10(-10) mol l(-1), which are equivalent to or better than the detection limits obtained by other analytical methods of biogenic amines. As a preliminary application, this method has been successfully employed to determine biogenic amines in the extract of tobacco leaf.


Assuntos
Aminas Biogênicas/análise , Eletroforese Capilar/métodos , Espectrometria de Fluorescência/métodos , Calibragem , Lasers , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
J Chromatogr A ; 1021(1-2): 209-13, 2003 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-14735990

RESUMO

A novel method based on capillary electrophoresis coupled to laser-induced fluorescence detection (CE-LIF) was developed for the determination of abscisic acid (ABA), which is an essential phytohormone during plant growth and development. ABA was labeled with 8-aminopyrene-1,3,6-trisulfonate via reductive amination in presence of acetic acid and sodium cyanoborohydride. The derivatization yield was maximized by optimizing several derivatization parameters including derivatization reagent concentration, reaction temperature and time. The conjugate was separated and quantitated by CE-LIF. The linearity of ABA was determined in the range from 0.1 to 10 micromol l(-1) with a correlation of 0.9979. The derivatization limit of detection for ABA was found to be 56 fmol (corresponding to the concentration of 2.8 x 10(-8) mol l(-1)). The detection limit for ABA was 5.5 amol for an injection volume of 5 nl. As a preliminary application, the proposed method was successfully applied to determining trace amount of ABA in the crude extracts of tobacco without extra purification and enrichment procedure and showed a better selectivity and sensitivity than those conventional methods used in determination of ABA.


Assuntos
Ácido Abscísico/análise , Eletroforese Capilar/métodos , Espectrometria de Fluorescência/métodos , Lasers , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA