Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538718

RESUMO

Immunosuppression by the tumor microenvironment is a pivotal factor contributing to tumor progression and immunotherapy resistance. Priming the tumor immune microenvironment (TIME) has emerged as a promising strategy for improving the efficacy of cancer immunotherapy. In this study we investigated the effects of noninvasive radiofrequency radiation (RFR) exposure on tumor progression and TIME phenotype, as well as the antitumor potential of PD-1 blockage in a model of pulmonary metastatic melanoma (PMM). Mouse model of PMM was established by tail vein injection of B16F10 cells. From day 3 after injection, the mice were exposed to RFR at an average specific absorption rate of 9.7 W/kg for 1 h per day for 14 days. After RFR exposure, lung tissues were harvested and RNAs were extracted for transcriptome sequencing; PMM-infiltrating immune cells were isolated for single-cell RNA-seq analysis. We showed that RFR exposure significantly impeded PMM progression accompanied by remodeled TIME of PMM via altering the proportion and transcription profile of tumor-infiltrating immune cells. RFR exposure increased the activation and cytotoxicity signatures of tumor-infiltrating CD8+ T cells, particularly in the early activation subset with upregulated genes associated with T cell cytotoxicity. The PD-1 checkpoint pathway was upregulated by RFR exposure in CD8+ T cells. RFR exposure also augmented NK cell subsets with increased cytotoxic characteristics in PMM. RFR exposure enhanced the effector function of tumor-infiltrating CD8+ T cells and NK cells, evidenced by increased expression of cytotoxic molecules. RFR-induced inhibition of PMM growth was mediated by RFR-activated CD8+ T cells and NK cells. We conclude that noninvasive RFR exposure induces antitumor remodeling of the TIME, leading to inhibition of tumor progression, which provides a promising novel strategy for TIME priming and potential combination with cancer immunotherapy.

2.
Zhongguo Zhen Jiu ; 43(9): 993-5, 2023 Sep 12.
Artigo em Chinês | MEDLINE | ID: mdl-37697872

RESUMO

Benign prostatic hyperplasia is caused by kidney deficiency and impaired qi transformation of the urinary bladder and is manifested by the stagnation of essence chamber. Based on jingjin (muscle region of meridian, sinew/fascia) theory and taking the visceral membrane as the principal, acupuncture is delivered at sinew/fascia to promote qi circulation, resolve stasis and open the orifice. Guided by CT, the needle is inserted at Zhongji (CV 3), the front-mu point of the urinary bladder, and then goes to the prostatic capsule, meaning "the disease of zang organ is treated by needling the front-mu point". In treatment of benign prostatic hyperplasia, this acupuncture therapy stimulates the different layers of fascia, by which, the defensive qi on the exterior is regulated and "essence orifice" in the interior is adjusted so that the urination can be promoted.


Assuntos
Terapia por Acupuntura , Meridianos , Hiperplasia Prostática , Masculino , Humanos , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/terapia , Próstata , Bexiga Urinária
3.
J Cell Physiol ; 234(11): 19640-19654, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30950039

RESUMO

Angiotensin II (AngII) facilitates angiogenesis that is associated with the continuous progression of atherosclerotic plaques, but the underlying mechanisms are still not fully understood. Several microRNAs (miRNAs) have been shown to promote angiogenesis; however, whether miRNAs play a crucial role in AngII-induced angiogenesis remains unclear. This study evaluated the functional involvement of miRNA-21 (miR-21) in the AngII-mediated proangiogenic response in human microvascular endothelial cells (HMECs). We found that AngII exerted a proangiogenic role, indicated by the promotion of proliferation, migration, and tube formation in HMECs. Next, miR-21 was found to be upregulated in AngII-treated HMECs, and its specific inhibitor potently blocked the proangiogenic effects of AngII. Subsequently, we focused on the constitutive activation of STAT3 in the AngII-mediated proangiogenic process. Bioinformatic analysis indicated that STAT3 acted as a transcription factor initiating miR-21 expression, which was verified by ChIP-PCR. A reporter assay further identified three functional binding sites of STAT3 in the miR-21 promoter region. Moreover, phosphatase and tensin homolog (PTEN) was recognized as a target of miR-21, and STAT3 inhibition restored AngII-induced reduction in PTEN. Similarly, the STAT3/miR-21 axis was shown to mediate AngII-provoked angiogenesis in vivo, which was demonstrated by using the appropriate inhibitors. Our data suggest that AngII was involved in proangiogenic responses through miR-21 upregulation and reduced PTEN expression, which was, at least in part, linked to STAT3 signaling. The present study provides novel insights into AngII-induced angiogenesis and suggests potential treatment strategies for attenuating the progression of atherosclerotic lesions and preventing atherosclerosis complications.


Assuntos
MicroRNAs/genética , Neovascularização Patológica/genética , PTEN Fosfo-Hidrolase/genética , Placa Aterosclerótica/genética , Fator de Transcrição STAT3/genética , Indutores da Angiogênese/farmacologia , Angiotensina II/genética , Angiotensina II/farmacologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Neovascularização Patológica/patologia , Placa Aterosclerótica/patologia , Transdução de Sinais/genética
4.
Cell Physiol Biochem ; 41(5): 2016-2026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420001

RESUMO

BACKGROUND: Nickel compounds are well-established human carcinogens with weak mutagenic activity. Histone methylation has been proposed to play an important role in nickel-induced carcinogenesis. Nicotinamide N-methyltransferase (NNMT) decreases histone methylation in several cancer cells by altering the cellular ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH). However, the role of NNMT in nickel-induced histone methylation remains unclear. METHODS: BEAS-2B cells were exposed to different concentrations of nickel chloride (NiCl2) for 72 h or 200 µM NiCl2 for different time periods. Histone H3 on lysine 9 (H3K9) mono-, di-, and trimethylation and NNMT protein levels were measured by western blot analysis. Expressions of NNMT mRNA and the H3k9me2-associated genes, mitogen-activated protein kinase 3 (MAP2K3) and dickkopf1 (DKK1), were determined by qPCR analysis. The cellular ratio of nicotinamide adenine dinucleotide (NAD+) to reduced NAD (NADH) and SAM/SAH ratio were determined. RESULTS: Exposure of BEAS-2B cells to nickel increased H3K9 dimethylation (H3K9me2), suppressed the expressions of H3K9me2-associated genes (MAP2K3 and DKK1), and induced NNMT repression at both the protein and mRNA levels. Furthermore, over-expression of NNMT inhibited nickel-induced H3K9me2 and altered the cellular SAM/SAH ratio. Additionally, the NADH oxidant phenazine methosulfate (PMS) not only reversed the nickel-induced reduction in NAD+/NADH but also inhibited the increase in H3K9me2. CONCLUSIONS: These findings indicate that the repression of NNMT may underlie nickel-induced H3K9 dimethylation by altering the cellular SAM/SAH ratio.


Assuntos
Histonas/metabolismo , Níquel/farmacologia , Nicotinamida N-Metiltransferase/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Linhagem Celular , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , Metilação/efeitos dos fármacos , Nicotinamida N-Metiltransferase/genética
5.
Cell Physiol Biochem ; 40(3-4): 633-643, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898410

RESUMO

BACKGROUND: Cadmium is a widespread environmental and occupational pollutant that accumulates in human body with a biological half-life exceeding 10 years. Cadmium exposure has been demonstrated to increase rates of cardiovascular diseases. Whether occupational cadmium exposure is associated with the increase in the prevalence of dyslipidemia and hence contributes to the risk of cardiovascular diseases is still equivocal. To test the hypothesis that exposure to cadmium is related to the prevalence of dyslipidemia, we examined the associations between blood cadmium concentration and the prevalence of dyslipidemia in workers occupationally exposed to cadmium in China. METHODS: A cross-sectional survey on demographic data, blood cadmium level and lipid profile in cadmium exposed workers from seven cadmium smelting factories in central and southwestern China was conducted. We measured blood cadmium concentration and lipid components of 1489 cadmium exposed workers. The prevalence of dyslipidemia was compared across blood cadmium quartiles. Associations between the blood cadmium concentrations and the prevalence of dyslipidemia were assessed using confounder adjusted linear and logistic regressions. RESULTS: The blood cadmium concentration was 3.61±0.84µg/L ( mean ±SD). The prevalence of dyslipidemia in this occupational population was 66.3%. Mean blood cadmium concentration of workers with dyslipedemia was significantly higher than that of workers without dyslipidemia (p <0.01). The prevalence of dyslipidemia increased dose-dependently with elevations in blood cadmium concentrations (p for trend <0.001). Elevated levels of blood cadmium were associated with BMI, education attainment, income, smoking status and duration of exposure (all p <0.01). Furthermore, the profile of blood lipid was obviously changed in this occupational population. The prevalence of high TC, high TG, Low HDL-C and high LDL-C rose with increases in blood cadmium levels dose-dependently (p for trend <0.001). The odds ratios (95% confidence interval) for dyslipidemia across the increasing blood cadmium quartiles were 1.21(1.16-1.55), 1.56(1.11-1.87), 1.79(1.26-2.25) respectively (referencing to 1.00; p for trend <0.001), after multivariate adjustment for BMI, education attainment, income, lifestyle factors and duration of exposure, the association between blood cadmium concentrations and the prevalence of dyslipidemia remained unchanged (all p for trend <0.001). CONCLUSION: Elevated blood cadmium concentration is associated with prevalence of dyslipidemia. Cadmium exposure could alter lipid metabolism in humans. It is imperative to control cadmium exposure of occupational population in cadmium related industries and reduce adverse health effects.


Assuntos
Cádmio/sangue , Dislipidemias/sangue , Dislipidemias/epidemiologia , Exposição Ocupacional/estatística & dados numéricos , Adulto , Feminino , Humanos , Lipídeos/sangue , Masculino , Análise Multivariada , Razão de Chances , Prevalência
6.
Cell Physiol Biochem ; 39(3): 961-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27513750

RESUMO

BACKGROUND: Both cadmium (Cd) and bisphenol A (BPA) are commonly encountered in humans' daily activities, but their combined genotoxic effects remain unclear. METHODS: In the present study, we exposed a mouse embryonic fibroblast cell line (NIH3T3) to Cd for 24 h, followed by a 24 h BPA exposure to evaluate toxicity. The cytotoxicity was evaluated by viability with CCK-8 assay and lactate dehydrogenase (LDH) release. Reactive oxygen species (ROS) production was measured by 2',7'-dichlorofluorescein diacetate (DCFH-DA). And DNA damage was measured by 8-hydroxydeoxyguanosine (8-OHdG), phosphorylated H2AX (γH2AX) and the comet assay. The flow cytometry was used to detect cell cycle distribution, and apoptosis was determined by TUNEL assay and western blot against poly-ADP-ribose polymerase (PARP). RESULTS: The results showed that Cd or BPA treatments alone (with the exception of BPA exposure at 50 µM) did not alter cell viability. However, pre-treatment with Cd aggravated the BPA-induced reduction in cell viability; increased BPA-induced LDH release, ROS production, DNA damage and G2 phase arrest; and elevated BPA-induced TUNEL-positive cells and the expression levels of cleaved PARP. Cd exposure concurrently decreased the expression of 8-oxoguanine-DNA glycosylase-1 (OGG1), whereas OGG1 over-expression abolished the enhancement of Cd on BPA-induced genotoxicity and cytotoxicity. CONCLUSION: These findings indicate that Cd exposure aggravates BPA-induced genotoxicity and cytotoxicity through OGG1 inhibition.


Assuntos
Poluentes Ocupacionais do Ar/farmacologia , Compostos Benzidrílicos/farmacologia , Cloreto de Cádmio/farmacologia , Dano ao DNA , DNA Glicosilases/antagonistas & inibidores , Estrogênios não Esteroides/farmacologia , Fenóis/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Combinação de Medicamentos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , L-Lactato Desidrogenase/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
7.
Toxicol Appl Pharmacol ; 286(2): 80-91, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25840356

RESUMO

With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni(2+) inside the cells. NiONPs at doses of 5, 10, and 20µg/cm(2) inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Brônquios/metabolismo , Células Epiteliais/metabolismo , Nanopartículas/toxicidade , Níquel/toxicidade , Sirtuína 1/antagonistas & inibidores , Brônquios/citologia , Brônquios/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Nanopartículas/metabolismo , Níquel/metabolismo , Sirtuína 1/genética
8.
Neurotoxicology ; 38: 9-16, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23727075

RESUMO

The oral ingestion of soluble nickel compounds leads to neurological symptoms in humans. Deficiencies in aerobic metabolism induced by neurotoxic stimulus can cause an energy crisis in the brain that results in a variety of neurotoxic effects. In the present study, we focused on the aerobic metabolic states to investigate whether disturbance of aerobic metabolism was involved in nickel-induced neurological effects in mice. Mice were orally administered nickel chloride, and neurobehavioral performance was evaluated using the Morris water maze and open field tests at different time points. Aerobic metabolic states in the cerebral cortex were analyzed at the same time points at which neurobehavioral changes were evident. We found that nickel exposure caused deficits in both spatial memory and exploring activity in mice and that nickel was deposited in their cerebral cortex. Deficient aerobic metabolism manifested as decreased O2 consumption and ATP concentrations, lactate and NADH accumulation, and oxidative stress. Meanwhile, the activity of prototypical iron-sulfur clusters (ISCs) containing enzymes that are known to control aerobic metabolism, including complex I and aconitase, and the expression of ISC assembly scaffold protein (ISCU) were inhibited following nickel deposition. Overall, these data suggest that aerobic metabolic disturbances, which accompanied the neurobehavioral changes, may participate in nickel-induced neurologic effects. The inactivation of ISC containing metabolic enzymes may result in the disturbance of aerobic metabolism. A better understanding of how nickel impacts the energy metabolic processes may provide insight into the prevention of nickel neurotoxicity.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Níquel/toxicidade , Aconitato Hidratase/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Regulação para Baixo , Proteínas Ferro-Enxofre/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , NAD/metabolismo , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos
9.
J Pineal Res ; 51(4): 426-33, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21797922

RESUMO

Recent studies suggest that oxidative stress and mitochondrial dysfunction play important roles in the neurotoxicity of nickel. Because mitochondrial DNA (mtDNA) is highly vulnerable to oxidative stress and melatonin can efficiently protect mtDNA against oxidative damage in various pathological conditions, the aims of this study were to determine whether mtDNA oxidative damage was involved in the neurotoxicity of nickel and to assay the neuroprotective effects of melatonin in mtDNA. In this study, we exposed mouse neuroblastoma cell lines (Neuro2a) to different concentrations of nickel chloride (NiCl(2), 0.125, 0.25, and 0.5 mm) for 24 hr. We found that nickel significantly increased reactive oxygen species (ROS) production and mitochondrial superoxide levels. In addition, nickel exposure increased mitochondrial 8-hydroxyguanine (8-OHdG) content and reduced mtDNA content and mtDNA transcript levels. Consistent with this finding, nickel was found to destroy mtDNA nucleoid structure and decrease protein levels of Tfam, a key protein component for nucleoid organization. However, all the oxidative damage to mtDNA induced by nickel was efficiently attenuated by melatonin pretreatment. Our results suggest that oxidative damage to mtDNA may account for the neurotoxicity of nickel. Melatonin has great pharmacological potential in protecting mtDNA against the adverse effects of nickel in the nervous system.


Assuntos
DNA Mitocondrial/efeitos dos fármacos , Melatonina/farmacologia , Níquel/toxicidade , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Linhagem Celular Tumoral , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
10.
Toxicol Appl Pharmacol ; 253(1): 38-44, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21419151

RESUMO

Mitochondrial dysfunction is thought to be a part of the mechanism underlying nickel-induced neurotoxicity. L-carnitine (LC), a quaternary ammonium compound biosynthesized from the amino acids lysine and methionine in all mammalian species, manifests its neuroprotective effects by improving mitochondrial energetics and function. The purpose of this study was to investigate whether LC could efficiently protect against nickel-induced neurotoxicity. Here, we exposed a mouse neuroblastoma cell line (Neuro-2a) to different concentrations of nickel chloride (NiCl2) (0.25, 0.5, 1, and 2 mM) for 24 h, or to 0.5 mM and 1 mM NiCl2 for various periods (0, 3, 6, 12, or 24 h). We found that nickel significantly increased the cell viability loss and lactate dehydrogenase (LDH) release in Neuro-2a cells. In addition, nickel exposure significantly elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, disrupted the mitochondrial membrane potential (ΔΨ(m)), reduced adenosine-5'-triphosphate (ATP) concentrations and decreased mitochondrial DNA (mtDNA) copy numbers and mtRNA transcript levels. However, all of the cytotoxicities and mitochondrial dysfunctions that were triggered by nickel were efficiently attenuated by pretreatment with LC. These protective effects of LC may be attributable to its role in maintaining mitochondrial function in nickel-treated cells. Our results suggest that LC may have great pharmacological potential in protecting against the adverse effects of nickel in the nervous system.


Assuntos
Carnitina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Níquel/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/prevenção & controle , Níquel/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA