Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4334, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773174

RESUMO

Millirobots must have low cost, efficient locomotion, and the ability to track target trajectories precisely if they are to be widely deployed. With current materials and fabrication methods, achieving all of these features in one millirobot remains difficult. We develop a series of graphene-based helical millirobots by introducing asymmetric light pattern distortion to a laser-induced polymer-to-graphene conversion process; this distortion resulted in the spontaneous twisting and peeling off of graphene sheets from the polymer substrate. The lightweight nature of graphene in combine with the laser-induced porous microstructure provides a millirobot scaffold with a low density and high surface hydrophobicity. Magnetically driven nickel-coated graphene-based helical millirobots with rapid locomotion, excellent trajectory tracking, and precise drug delivery ability were fabricated from the scaffold. Importantly, such high-performance millirobots are fabricated at a speed of 77 scaffolds per second, demonstrating their potential in high-throughput and large-scale production. By using drug delivery for gastric cancer treatment as an example, we demonstrate the advantages of the graphene-based helical millirobots in terms of their long-distance locomotion and drug transport in a physiological environment. This study demonstrates the potential of the graphene-based helical millirobots to meet performance, versatility, scalability, and cost-effectiveness requirements simultaneously.

2.
J Med Chem ; 67(8): 6292-6312, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38624086

RESUMO

Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 µM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).


Assuntos
Antineoplásicos , Neoplasias Colorretais , Quadruplex G , Mitocôndrias , Humanos , Quadruplex G/efeitos dos fármacos , Ligantes , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto , Células HCT116 , DNA Mitocondrial/metabolismo
3.
ACS Sens ; 9(3): 1545-1554, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38450702

RESUMO

rRNAs are prevalent in living organisms. They are produced in nucleolus and mitochondria and play essential cellular functions. In addition to the primary biofunction in protein synthesis, rRNAs have been recognized as the emerging signaling molecule and drug target for studies on nucleolus morphology, mitochondrial autophagy, and tumor cell malignancy. Currently, only a few rRNA-selective probes have been developed, and most of them encounter the drawbacks of low water solubility, poor nuclear membrane permeability, short emission wavelength, low stability against photobleaching, and high cytotoxicity. These unfavorable properties of rRNA probes limit their potential applications. In the present study, we reported a new rRNA-selective and near-infrared fluorescent turn-on probe, 4MPS-TO, capable of tracking rRNA in live human cancer cells. The real-time monitoring performance in nucleolus morphology and mitochondrial autophagy is demonstrated in HeLa cells. The probe shows great application potential for being used as a rRNA-selective, sensitive, and photostable imaging tool in chemical biology study and drug screening.


Assuntos
Mitofagia , Neoplasias , Humanos , Células HeLa , Corantes Fluorescentes/química , Imagem Óptica/métodos , Autofagia
4.
J Control Release ; 368: 650-662, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490374

RESUMO

Glioblastoma (GBM), deep in the brain, is more challenging to diagnose and treat than other tumors. Such challenges have blocked the development of high-impact therapeutic approaches that combine reliable diagnosis with targeted therapy. Herein, effective cyanine dyes (IRLy) with the near-infrared two region (NIR-II) adsorption and aggregation-induced emission (AIE) have been developed via an "extended conjugation & molecular rotor" strategy for multimodal imaging and phototherapy of deep orthotopic GBM. IRLy was synthesized successfully through a rational molecular rotor modification with stronger penetration, higher signal-to-noise ratio, and a high photothermal conversion efficiency (PCE) up to ∼60%, which can achieve efficient NIR-II photo-response. The multifunctional nanoparticles (Tf-IRLy NPs) were further fabricated to cross the blood-brain barrier (BBB) introducing transferrin (Tf) as a targeting ligand. Tf-IRLy NPs showed high biosafety and good tumor enrichment for GBM in vitro and in vivo, and thus enabled accurate, efficient, and less invasive NIR-II multimodal imaging and photothermal therapy. This versatile Tf-IRLy nanosystem can provide a reference for the efficient, precise and low-invasive multi-synergistic brain targeted photo-theranostics. In addition, the "extended conjugation & molecular rotor" strategy can be used to guide the design of other photothermal agents.


Assuntos
Glioblastoma , Nanopartículas , Neoplasias , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Fototerapia/métodos , Encéfalo , Barreira Hematoencefálica , Corantes , Nanomedicina Teranóstica/métodos , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
5.
Health Inf Sci Syst ; 12(1): 7, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38261831

RESUMO

Thyroid ultrasound is a widely used diagnostic technique for thyroid nodules in clinical practice. However, due to the characteristics of ultrasonic imaging, such as low image contrast, high noise levels, and heterogeneous features, detecting and identifying nodules remains challenging. In addition, high-quality labeled medical imaging datasets are rare, and thyroid ultrasound images are no exception, posing a significant challenge for machine learning applications in medical image analysis. In this study, we propose a Dual-branch Attention Learning (DBAL) convolutional neural network framework to enhance thyroid nodule detection by capturing contextual information. Leveraging jigsaw puzzles as a pretext task during network training, we improve the network's generalization ability with limited data. Our framework effectively captures intrinsic features in a global-to-local manner. Experimental results involve self-supervised pre-training on unlabeled ultrasound images and fine-tuning using 1216 clinical ultrasound images from a collaborating hospital. DBAL achieves accurate discrimination of thyroid nodules, with a 88.5% correct diagnosis rate for malignant and benign nodules and a 93.7% area under the ROC curve. This novel approach demonstrates promising potential in clinical applications for its accuracy and efficiency.

6.
Chemistry ; 29(34): e202300705, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36971407

RESUMO

The development of site-specific, target-selective and biocompatible small molecule ligands as a fluorescent tool for real-time study of cellular functions of RNA G-quadruplexes (G4s), which are associated with human cancers, is of significance in cancer biology. We report a fluorescent ligand that is a cytoplasm-specific and RNA G4-selective fluorescent biosensor in live HeLa cells. The in vitro results show that the ligand is highly selective targeting RNA G4s including VEGF, NRAS, BCL2 and TERRA. These G4s are recognized as human cancer hallmarks. Moreover, intracellular competition studies with BRACO19 and PDS, and the colocalization study with G4-specific antibody (BG4) in HeLa cells may support that the ligand selectively binds to G4s in cellulo. Furthermore, the ligand was demonstrated for the first time in the visualization and monitoring of dynamic resolving process of RNA G4s by the overexpressed RFP-tagged DHX36 helicase in live HeLa cells.


Assuntos
Quadruplex G , Neoplasias , Humanos , Células HeLa , Ligantes , RNA/metabolismo , Citoplasma/metabolismo
7.
Bioorg Chem ; 132: 106349, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716644

RESUMO

Photosensitizers play a key role in bioimaging and photodynamic therapy (PDT) of cancer. However, conventional photosensitizers usually do not achieve the desired efficacy in PDT due to their poor photostability, targeting ability, and responsiveness. Herein, we designed a series of photosensitizers with aggregation-induced emission (AIE) effect using benzothiazole- triphenylamine (BZT-triphenylamine) as the parent nucleus. The synthesized compound SIN ((E)-2-(4-(diphenylamino)styryl)-3-(4-iodobutyl)benzo[d]thiazol-3-ium) exhibits good biocompatibility, photostability, and bright emission in the near-infrared range (600-800 nm). The fluorescence emission intensity is responsive to viscosity, with significant fluorescence enhancement (48 times) and high fluorescence quantum yield (4.45 %) at high viscosity. Moreover, SIN has particular lysosome targeting properties with a Pearson correlation coefficient (PCC) of 0.97 and has good 1O2 generation ability under white light irradiation, especially in a weak acidic environment. Thus, SIN can realize good bioimaging ability and photodynamic therapeutic efficacy under the highly viscous and weakly acidic environment of lysosomes in the tumor cells. This study indicates that SIN has potential as a multifunctional organic photosensitizer for bioimaging and PDT of tumor.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Luz , Lisossomos
8.
Biomater Sci ; 11(3): 828-839, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36453535

RESUMO

In the complex and severe tumor microenvironment, the antitumor efficiency of nanomedicines is significantly limited by their low-efficacy monotherapy, non-tumor targeting, and systemic toxicity. Herein, to achieve tumor-targeted and enhanced chemodynamic/photothermal therapy (CDT/PTT), we fabricated an "all-in-one" biocompatible transferrin-loaded cobalt ferrate nanoparticle (CoFe2O4@Tf (CFOT)) with multiple functions by a simple solvothermal method and the following transferrin (Tf) functionalization. Upon exposure to 808 nm laser irradiation, CFOT, as a novel photothermal agent, exhibited outstanding phototherapeutic activity because of its excellent photothermal conversion efficiency (η = 46.5%) for high-performance PTT. Moreover, CFOT with multiple redox pairs could efficiently convert endogenous H2O2 to hazardous hydroxyl radicals (˙OH) via Fenton reactions while scavenging overexpressed GSH in the tumor microenvironment to realize self-reinforcing CDT. Importantly, CFOT undergoes a promoted Fenton-type reaction upon increasing the temperature under a photothermal effect and could augment PTT by high-level ˙OH, exhibiting a considerably enhanced synergistic therapeutic effect. In vitro and in vivo experimental results demonstrated that CFOT has good potential as an "all-in-one" nanoagent to combine photothermal, chemodynamic, and tumor targeting for efficient tumor elimination.


Assuntos
Nanopartículas , Neoplasias , Humanos , Transferrina , Peróxido de Hidrogênio , Terapia Fototérmica , Neoplasias/tratamento farmacológico , Cobalto/farmacologia , Microambiente Tumoral , Linhagem Celular Tumoral
9.
Front Bioeng Biotechnol ; 10: 926829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800333

RESUMO

Icariside I, the glycosylation product of icaritin, is a novel effective anti-cancer agent with immunological anti-tumor activity. However, very limited natural icariside I content hinders its direct extraction from plants. Therefore, we employed a computer-aided protein design strategy to improve the catalytic efficiency and substrate specificity of the α-L-rhamnosidase from Thermotoga petrophila DSM 13995, to provide a highly-efficient preparation method. Several beneficial mutants were obtained by expanding the active cavity. The catalytic efficiencies of all mutants were improved 16-200-fold compared with the wild-type TpeRha. The double-point mutant DH was the best mutant and showed the highest catalytic efficiency (k cat /K M : 193.52 s-1 M-1) against icariin, which was a 209.76-fold increase compared with the wild-type TpeRha. Besides, the single-point mutant H570A showed higher substrate specificity than that of the wild-type TpeRha in hydrolysis of different substrates. This study provides enzyme design strategies and principles for the hydrolysis of rhamnosyl natural products.

10.
Nucleic Acids Res ; 50(4): 1829-1848, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35166828

RESUMO

DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging. We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity. The ligands are designed to establish multi-site interactions in the G4-binding pocket. This structural feature may render the molecules higher selectivity toward c-MYC G4s than other structures. The ligand-G4 interaction studied with 1H NMR may suggest a stacking interaction with the terminal G-tetrad. Moreover, the intracellular co-localization study with BG4 and cellular competition experiments with BRACO-19 may suggest that the binding targets of the ligands in cells are most probably G4-structures. Furthermore, the ligands that either preferentially bind to c-MYC promoter or telomeric G4s are able to downregulate markedly the c-MYC and hTERT gene expression in MCF-7 cells, and induce senescence and DNA damage to cancer cells. The in vivo antitumor activity of the ligands in MCF-7 tumor-bearing mice is also demonstrated.


Assuntos
Antineoplásicos/química , Neoplasias da Mama , Quadruplex G , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Desenho de Fármacos , Feminino , Genes myc , Humanos , Ligantes , Células MCF-7 , Camundongos , Regiões Promotoras Genéticas , Telômero
11.
Bioorg Chem ; 113: 104954, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34023651

RESUMO

Organic small molecules with near-infrared (NIR) absorption hold great promise as the phototheranostic agents for clinical translation by virtue of their inherent merits such as well-defined chemical structure, high purity and good reproducibility. Probes that happen to be based on cyanine dyes exhibit strong NIR-absorbing and efficient photothermal conversion, representing a new class of photothermal agents (PAs) for photothermal therapy (PTT), and taking into account the heat susceptibility of Mitochondria (Mito), we designed and prepared a mitochondria-targeted organic small molecule (Mito-BWQ) based on thiazole orange maternal unit that can effectively kill tumor cells through the hyperpyrexia generated in the lesions under exogenous laser irradiation. The Confocal laser scanning microscope was employed to determine the preferential targeting of Mito-BWQ to the mitochondria of MCF-7 cells and U87 cells. When subjected to 600 nm laser radiation, Mito-BWQ produced an increase in temperature in test systems and this increase was dependent on both the laser power and probe concentration. In vitro tests, cytotoxicity was observed when cells were incubated with Mito-BWQ and exposed to laser irradiation. The PTT in vivo also showed that Mito-BWQ performed remarkably in tumor inhibition. This study thus provides a vital starting point for the creation of thiazole orange-based PTT formulations and promotes further advances in the field of PAs-based anticancer research and therapy.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Terapia Fototérmica , Quinolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzotiazóis/síntese química , Benzotiazóis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
J Med Chem ; 64(4): 2125-2138, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33559473

RESUMO

A series of fluorescent ligands, which were systematically constructed from thiazole orange scaffold, was investigated for their interactions with G-quadruplex structures and antitumor activity. Among the ligands, compound 3 was identified to exhibit excellent specificity toward telomere G4-DNA over other nucleic acids. The affinity of 3-Htg24 was almost 5 times higher than that of double-stranded DNA and promoter G4-DNA. Interaction studies showed that 3 may bind to both G-tetrad and the lateral loop near the 5'-end. The intracellular colocalization with BG4 and competition studies with BRACO19 reveal that 3 may interact with G4-structures. Moreover, 3 reduces the telomere length and downregulates hTERC and hTERT mRNA expression in HeLa cells. The cytotoxicity of 3 against cancer cells (IC50 = 12.7-16.2 µM) was found to be generally higher than noncancer cells (IC50 = 52.3 µM). The findings may support that the ligand is telomere G4-DNA specific and may provide meaningful insights for anticancer drug design.


Assuntos
Benzotiazóis/farmacologia , DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Quadruplex G , Quinolinas/farmacologia , Estirenos/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/metabolismo , Linhagem Celular Tumoral , DNA/genética , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Humanos , Ligantes , Microscopia Confocal , Microscopia de Fluorescência , Quinolinas/síntese química , Quinolinas/metabolismo , RNA/metabolismo , Estirenos/síntese química , Estirenos/metabolismo , Telomerase/metabolismo
13.
Phytomedicine ; 85: 153401, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33191068

RESUMO

BACKGROUND: The Coronavirus disease 2019 pneumonia broke out in 2019 (COVID-19) and spread rapidly, which causes serious harm to the health of people and a huge economic burden around the world. PURPOSE: In this study, the network pharmacology, molecular docking and surface plasmon resonance technology (SPR) were used to explore the potential compounds and interaction mechanism in the Toujie Quwen Granules (TQG) for the treatment of coronavirus pneumonia 2019. STUDY DESIGN: The chemical constituents and compound targets of Lonicerae Japonicae Flos, Pseudostellariae Radix, Artemisia Annua L, Peucedani Radix, Forsythiae Fructus, Scutellariae Radix, Hedysarum Multijugum Maxim, Isatidis Folium, Radix Bupleuri, Fritiliariae Irrhosae Bulbus, Cicadae Periostracum, Poria Cocos Wolf, Pseudobulbus Cremastrae Seu Pleiones, Mume Fructus, Figwort Root and Fritillariae Thunbrgii Bulbus in TQG were searched. The target name was translated to gene name using the UniProt database and then the Chinese medicine-compound-target network was constructed. Protein-protein interaction network (PPI), Gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the core targets were performed in the Metascape to predict its mechanism. The top 34 compounds in the Chinese medicine-compound-target network were docked with SARS-CoV-2 3CL enzyme and SARS--CoV--2 RNA-dependent RNA polymerase (RdRp) and then the 13 compounds with lowest affinity score were docked with angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 Spike protein and interleukin 6 to explore its interaction mechanism. Lastly, SPR experiments were done using the quercetin, astragaloside IV, rutin and isoquercitrin, which were screened from the Chinese medicine-compound-target network and molecular docking. RESULTS: The Chinese medicine-compound-target network includes 16 medicinal materials, 111 compounds and 298 targets, in which the degree of PTGS2, TNF and IL-6 is higher compared with other targets and which are the disease target exactly. The result of GO function enrichment analysis included the response to the molecule of bacterial origin, positive regulation of cell death, apoptotic signaling pathway, cytokine-mediated signaling pathway, cytokine receptor binding and so on. KEGG pathway analysis enrichment revealed two pathways: signaling pathway- IL-17 and signaling pathway- TNF. The result of molecular docking showed that the affinity score of compounds including quercetin, isoquercitrin, astragaloside IV and rutin is higher than other compounds. In addition, the SPR experiments revealed that the quercetin and isoquercitrin were combined with SARS-CoV-2 Spike protein rather than Angiotensin-converting enzyme 2, while astragaloside IV and rutin were combined with ACE2 rather than SARS-CoV-2 Spike protein. CONCLUSION: TQG may have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation related targets and pathways, in the way of multi-component, multi-target and multi-pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Ontologia Genética , Humanos , Interleucina-6/química , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Mapas de Interação de Proteínas , Glicoproteína da Espícula de Coronavírus/química , Ressonância de Plasmônio de Superfície , Tratamento Farmacológico da COVID-19
14.
Chem Commun (Camb) ; 56(95): 15016-15019, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33185205

RESUMO

A small-sized c-MYC promoter G-quadruplex selective fluorescent BZT-Indolium binding ligand was demonstrated for the first time as a highly target-specific and photostable probe for in vitro staining and live cell imaging and it was found to be able to inhibit the amplification of the c-MYC G-rich sequence (G-quadruplex) and down-regulate oncogene c-MYC expression in human cancer cells (HeLa).


Assuntos
Benzotiazóis/química , Proteínas de Ligação a DNA/análise , Corantes Fluorescentes/química , Indóis/química , Fatores de Transcrição/análise , Sequência de Aminoácidos , Técnicas Biossensoriais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Quadruplex G , Células HeLa , Humanos , Ligantes , Imagem Óptica , Regiões Promotoras Genéticas , Sensibilidade e Especificidade , Coloração e Rotulagem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-32500833

RESUMO

The investigation of estrogen actions and their interaction characteristics with estrogen receptors (ERs) to induce unique functional features inside cells have allowed us to understand better the regulation of many vital physiological and cellular processes in humans. The biological effects of estrogenic ligands or compounds are mediated via estrogen receptors that act as the ligand-activated transcription factors. Therefore, the study on ligand-ER interaction properties and mechanism of ligand-ER complexes binding to specific estrogen response elements located in the promoters of target genes are very critical to realize the complicated biological process regulated by the endogenous estrogens. Several reviews have provided comprehensive and updated information on the influence of estrogen receptors in health and disease. However, the mechanism of estrogen-ERs binding and affinity aspects at molecular level is relatively under-investigated. This review thus aims to shed light on the significance of the binding kinetics of ligand-ER interactions because the information provide great assistance to define how a ligand or a drug can communicate with physiology to produce a desired therapeutic response. In addition, the most frequently used methodologies for the binding kinetic study are highlighted over the last decade.


Assuntos
Ligantes , Receptores de Estrogênio , Estrogênios , Estrona , Regulação da Expressão Gênica , Humanos , Cinética , Regiões Promotoras Genéticas , Elementos de Resposta , Transcrição Gênica
16.
Bioorg Chem ; 99: 103821, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32279036

RESUMO

A number of new fluorescent nucleic acid binding ligands were synthesized by utilizing the non-specific thiazole orange dye as the basic scaffold for molecular design. Under simple synthetic conditions, the molecular scaffold of thiazole orange bridged with a terminal side-group (phenol or methoxybenzene) becomes more flexible because the newly added ethylene bridge is relatively less rigid than the methylene of thiazole orange. It was found that these molecules showed better selectivity towards G-quadruplex DNA structure in molecular interactions with different type of nucleic acids. The difference in terms of induced DNA-ligand interaction signal, selectivity, and binding affinity of the ligands with the representative nucleic acids including single-stranded DNA, double-stranded DNA, telomere and promoter G4-DNA and ribosomal RNA were investigated. The position of the terminal methoxyl groups was found showing strong influence both on binding affinity and fluorescent discrimination among 19 nucleic acids tested. The ligand with a methoxyl group substituted at the meta-position of the styryl moiety exhibited the best fluorescent recognition performance towards telo21 G4-DNA. A good linear relationship between the induced fluorescent binding signal and the concentration of telo21 was obtained. The comparison of ligand-DNA interaction properties including equilibrium binding constants, molecular docking, G4-conformation change and stabilization ability for G4-structures was also conducted. Two cancer cell lines (human prostate cancer cell (PC3) and human hepatoma cell (hepG2)) were selected to explore the inhibitory effect of the ligands on the cancer cell growth. The IC50 values obtained in the MTT assay for the two cancer cells were found in the range of 3.4-10.8 µM.


Assuntos
Anisóis/química , Antineoplásicos/química , DNA/química , Corantes Fluorescentes/química , Fenóis/química , Anisóis/síntese química , Anisóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Quadruplex G , Células Hep G2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Células PC-3 , Fenóis/síntese química , Fenóis/farmacologia , Relação Estrutura-Atividade
17.
Elife ; 72018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393851

RESUMO

Luminal fluid reabsorption plays a fundamental role in male fertility. We demonstrated that the ubiquitous GPCR signaling proteins Gq and ß-arrestin-1 are essential for fluid reabsorption because they mediate coupling between an orphan receptor ADGRG2 (GPR64) and the ion channel CFTR. A reduction in protein level or deficiency of ADGRG2, Gq or ß-arrestin-1 in a mouse model led to an imbalance in pH homeostasis in the efferent ductules due to decreased constitutive CFTR currents. Efferent ductule dysfunction was rescued by the specific activation of another GPCR, AGTR2. Further mechanistic analysis revealed that ß-arrestin-1 acts as a scaffold for ADGRG2/CFTR complex formation in apical membranes, whereas specific residues of ADGRG2 confer coupling specificity for different G protein subtypes, this specificity is critical for male fertility. Therefore, manipulation of the signaling components of the ADGRG2-Gq/ß-arrestin-1/CFTR complex by small molecules may be an effective therapeutic strategy for male infertility.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fertilidade , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , beta-Arrestina 1/genética
18.
Biosens Bioelectron ; 81: 373-381, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26994364

RESUMO

A series of C1-, C2-and C3-symmetric pyridinium conjugates with different styrene-like side groups were synthesized and were utilized as G-quadruplex selective fluorescent probes. The new compounds were well-characterized. Their selectivity, sensitivity, and stability towards G-quadruplex were studied by fluorescence titration, native PAGE experiments, FRET and circular dichroism (CD) analyses. These new compounds investigated in the fluorescence assays were preferentially bound with G-quadruplex DNA compared with other type of nucleic acids and it is fascinating to realize the effects of molecular symmetry and associated side groups showing unexpectedly great influence on the fluorescent signal enhancement for the discrimination of G-quadruplexes DNA from other nucleic acids. This may correlate with the pocket symmetry and shape of the G-quadruplex DNA inherently. Among the compounds, a C2-symmetric dye (2,6-bis-((E)-2-(1H-indol-3-yl)-vinyl)-1-methylpyridin-1-ium iodide) with indolyl-groups substituted was screened out from the series giving the best selectivity and sensitivity towards G-quadruplexes DNA, particularly telo21, due to its high equilibrium binding constant (K=2.17×10(5)M(-1)). In addition, the limit of detection (LOD) of the dye to determine telo21 DNA in bioassays was found as low as 33nM. The results of the study give insight and certain crucial factors, such as molecular symmetry and the associated side groups, on developing of effective fluorescent dyes for G-quadruplex DNA applications including G-quadruplex structure stabilization, biosensing and clinical applications. The compound was also demonstrated as a very selective G-quadruplex fluorescent agent for living cell staining and imaging.


Assuntos
DNA/química , Corantes Fluorescentes/química , Quadruplex G , Compostos de Piridínio/química , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Microscopia de Fluorescência , Imagem Óptica , Espectrometria de Fluorescência/métodos
19.
Biochem Biophys Rep ; 5: 346-352, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28955841

RESUMO

At present, wt1, a Wilms' tumor suppressor gene, is recognized as a critical regulator of tumorigenesis and a potential therapeutic target. WT1 shows the ability to regulate the transcription of bcl-2 by binding to a GC-rich region in the promoter, which can then fold into a special DNA secondary structure called the G-quadruplex. This function merits the exploration of the effect of a G-quadruplex ligand on the binding and subsequent regulation of WT1 on the bcl-2 promoter. In the present study, WT1 was found to bind to the double strand containing the G-quadruplex-forming sequence of the bcl-2 promoter. However, the G-quadruplex ligand SYUIQ-FM05 effectively blocked this binding by interacting with the GC-rich sequence. Our new findings are significant in the exploration of new strategies to block WT1's transcriptional regulation for cancer-cell treatment.

20.
Chem Commun (Camb) ; 51(83): 15241-4, 2015 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-26329127

RESUMO

A new RNA-selective fluorescent dye integrated with a thiazole orange and a p-(methylthio)styryl moiety shows better nucleolus RNA staining and imaging performance in live cells than the commercial stains. It also exhibits excellent photostability, cell tolerance, and counterstain compatibility with 4',6-diamidino-2-phenylindole for specific RNA-DNA colocalization in bioassays.


Assuntos
Benzotiazóis/química , Corantes Fluorescentes/química , Quinolinas/química , RNA Neoplásico/análise , Estirenos/química , Animais , Linhagem Celular , Humanos , Ligantes , Camundongos , Estrutura Molecular , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA