Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
Elife ; 132024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805545

RESUMO

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfß/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and Tgfß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.


Assuntos
Cartilagem Articular , Via de Sinalização Hippo , Homeostase , Osteoartrite , Fator de Crescimento Transformador beta , Proteínas de Sinalização YAP , Animais , Cartilagem Articular/metabolismo , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Via de Sinalização Wnt , beta Catenina/metabolismo , beta Catenina/genética , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
2.
Front Public Health ; 12: 1333487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699428

RESUMO

Background: Iruplinalkib is a second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) with efficacy in patients with ALK-positive crizotinib-resistant advanced non-small cell lung cancer (NSCLC), which is independently developed by a Chinese pharmaceutical company. This study examined the cost-effectiveness of iruplinalkib versus alectinib in the Chinese healthcare setting. Methods: A partitioned survival model was developed to project the economic and health outcomes. Efficacy was derived using unanchored matching-adjusted indirect comparison (MAIC). Cost and utility values were obtained from the literature and experts' opinions. Deterministic and probabilistic sensitivity analyses (PSA) were carried out to evaluate the model's robustness. Results: Treatment with iruplinalkib versus alectinib resulted in a gain of 0.843 quality-adjusted life years (QALYs) with incremental costs of $20,493.27, resulting in an incremental cost-effectiveness ratio (ICER) of $24,313.95/QALY. Parameters related to relative efficacy and drug costs were the main drivers of the model outcomes. From the PSA, iruplinalkib had a 90% probability of being cost-effective at a willingness-to-pay threshold of $37,863.56/QALY. Conclusion: Compared to alectinib, iruplinalkib is a cost-effective therapy for patients with ALK-positive crizotinib-resistant advanced NSCLC.


Assuntos
Quinase do Linfoma Anaplásico , Carbazóis , Carcinoma Pulmonar de Células não Pequenas , Análise Custo-Benefício , Crizotinibe , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Piperidinas , Anos de Vida Ajustados por Qualidade de Vida , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carbazóis/uso terapêutico , Carbazóis/economia , China , Crizotinibe/uso terapêutico , Piperidinas/uso terapêutico , Piperidinas/farmacologia , Quinase do Linfoma Anaplásico/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/economia , Masculino , Feminino , Pessoa de Meia-Idade
3.
Environ Toxicol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644733

RESUMO

Cadmium (Cd) is a pervasive environmental contaminant and a significant risk factor for liver injury. The present study was undertaken to evaluate the involvement of ferroptosis and neutrophil extracellular traps (NETs) in Cd-induced liver injury in Nile tilapia (Oreochromis niloticus), and to explore its underlying mechanism. Cd-induced liver injury was associated with increased total iron, malondialdehyde (MDA), and Acyl-CoA synthetase long-chain family member 4 (ACSL4), together with reduced levels of glutathione, glutathione peroxidase-4a (Gpx4a), and solute carrier family 7 member 11 (SLC7A11), which are all hallmarks of ferroptosis. Moreover, liver hyperemia, neutrophil infiltration, increased inflammatory factors and myeloperoxidase, as well as elevated serum DNA content in Cd-stimulated Nile tilapia suggested that a considerable number of neutrophils were recruited to the liver. Furtherly, in vitro experiments demonstrated that Cd induced the formation of NETs, and the possible mechanism was related to the generation of reactive oxygen species and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, along with the P38 and extracellular regulated protein kinase (ERK) signaling pathways. We concluded that ferroptosis and NETs are the critical mechanisms contributing to Cd-induced liver injury in Nile tilapia. These findings will contribute to Cd toxicological studies in aquatic animals.

4.
Aging (Albany NY) ; 16(7): 6455-6477, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613794

RESUMO

Gastric cancer presents a formidable challenge, marked by its debilitating nature and often dire prognosis. Emerging evidence underscores the pivotal role of tumor stem cells in exacerbating treatment resistance and fueling disease recurrence in gastric cancer. Thus, the identification of genes contributing to tumor stemness assumes paramount importance. Employing a comprehensive approach encompassing ssGSEA, WGCNA, and various machine learning algorithms, this study endeavors to delineate tumor stemness key genes (TSKGs). Subsequently, these genes were harnessed to construct a prognostic model, termed the Tumor Stemness Risk Genes Prognostic Model (TSRGPM). Through PCA, Cox regression analysis and ROC curve analysis, the efficacy of Tumor Stemness Risk Scores (TSRS) in stratifying patient risk profiles was underscored, affirming its ability as an independent prognostic indicator. Notably, the TSRS exhibited a significant correlation with lymph node metastasis in gastric cancer. Furthermore, leveraging algorithms such as CIBERSORT to dissect immune infiltration patterns revealed a notable association between TSRS and monocytes and other cell. Subsequent scrutiny of tumor stemness risk genes (TSRGs) culminated in the identification of CDC25A for detailed investigation. Bioinformatics analyses unveil CDC25A's implication in driving the malignant phenotype of tumors, with a discernible impact on cell proliferation and DNA replication in gastric cancer. Noteworthy validation through in vitro experiments corroborated the bioinformatics findings, elucidating the pivotal role of CDC25A expression in modulating tumor stemness in gastric cancer. In summation, the established and validated TSRGPM holds promise in prognostication and delineation of potential therapeutic targets, thus heralding a pivotal stride towards personalized management of this malignancy.


Assuntos
Aprendizado de Máquina , Células-Tronco Neoplásicas , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica
5.
Ophthalmol Ther ; 13(6): 1757-1772, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676875

RESUMO

INTRODUCTION: Chronic non-infectious uveitis affecting the posterior segment (NIU-PS), which can be recurrent and persistent for numerous years, mainly affects people of working age and significantly increases the risk of visual impairment. This study aimed to investigate the cost-effectiveness of fluocinolone acetonide intravitreal (FAI) implant in the treatment of patients with chronic NIU-PS from the Chinese healthcare perspective. METHODS: A Markov model with a 2-week cycle was constructed from the perspective of the Chinese healthcare system over a lifetime time horizon. The model consists of four health states: on-treatment, treatment failure, blindness, and death. The outcomes for effectiveness were based on the Chinese real-world study (RWS). Utilities and mortality rates were derived from published literature and standard sources. Costs were determined from the MENET website, prices of medical service items at local providers, published literature, and expert surveys. Outcomes were measured in quality-adjusted life years (QALYs). Sensitivity analyses were performed to account for the impact of uncertainty. RESULTS: It was estimated that in the base case, the FAI implant provided 0.43 incremental QALYs compared with the limited current practice (LCP) at an additional cost of $7503.72 (¥50,575.05), resulting in an incremental cost-effectiveness ratio (ICER) of $17,373.49 (¥117,097.33) per QALY gained. Parameters related to utility emerged as the primary influencers on the outcomes. In probabilistic sensitivity analysis (PSA), considering the willingness-to-pay (WTP) threshold of $19,072 (¥128,547) and $38,145 (¥257,094), the FAI implant had 67.70% and 99.50% probability of being cost-effective, respectively. As demonstrated in the scenario analysis, if the FAI implant aligns its price reduction with the average rate from the 2023 negotiation of the National Reimbursement Drug List (NRDL), it would result in lower costs and represent an absolute advantage. CONCLUSIONS: The FAI implant, which can effectively reduce the recurrence rate and maintain the incremental costs within the WTP limit, is likely to be cost-effective in treating chronic NIU-PS in China.

6.
Int J Biol Macromol ; 267(Pt 1): 131428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583834

RESUMO

Breast cancer is the second leading cause of cancer-related deaths among women worldwide. Despite significant advancements in chemotherapy, its effectiveness is often limited by poor drug distribution and systemic toxicity caused by the weak targeting ability of conventional therapeutic agents. The hypoxic tumor microenvironment (TME) also plays a vital role in treatment outcomes. Oral anticancer therapeutic agents have gained popularity and show promising results due to their ease of repeated administration. This study introduces autopilot biohybrids (Bif@BDC-NPs) for the effective delivery of doxorubicin (DOX) to the tumor site. This hybrid combines albumin-encapsulated DOX nanoparticles (BD-NPs) coated with chitosan (CS) for breast cancer chemotherapy, along with anaerobic Bifidobacterium infantis (B. infantis, Bif) serving as self-propelled motors. Due to Bif's specific anaerobic properties, Bif@BDC-NPs precisely anchor hypoxic regions of tumor tissue and significantly increase drug accumulation at the tumor site, thereby promoting tumor cell death. In an in-situ mouse breast cancer model, Bif@BDC-NPs achieved 94 % tumor inhibition, significantly prolonging the median survival of mice to 62 days, and reducing the toxic side effects of DOX. Therefore, the new bacteria-driven oral drug delivery system, Bif@BDC-NPs, overcomes multiple physiological barriers and holds great potential for the precise treatment of solid tumors.


Assuntos
Neoplasias da Mama , Quitosana , Doxorrubicina , Nanopartículas , Quitosana/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Animais , Feminino , Nanopartículas/química , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Administração Oral , Humanos , Portadores de Fármacos/química , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Sistemas de Liberação de Medicamentos
7.
Am J Cancer Res ; 14(2): 832-853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455420

RESUMO

The inflammation-related tumor microenvironment (TME) is one of the major driving forces of hepatocarcinogenesis. We aimed to investigate cell-to-cell communication among Hepatocellular Carcinoma (HCC) through re-analyzing HCC single-cell RNA-seq data, and to confirm such cellular interaction through in vitro and in vivo study. We found a subset of Regulatory B cells with PD-L1 expression (PD-L1+ Bregs), mainly located in adjacent HCC tissues. In co-localization with PD-L1+ Bregs, a subset of Tumor Associated Macrophages with high expression of CXCL12 (CXCL12+ TAMs) was also mainly located in adjacent HCC tissues. Moreover, CXCL12+ TAMs can be stimulated in vitro using an HCC conditional medium. Using CellChat analysis and Multiplex Immunohistochemistry staining (mIHC), CXCL12+ TAMs were found to be first recruited by Cancer-Associated Fibroblasts (CAFs) through a CD74/macrophage migration inhibitory factor (MIF) pattern, and further differentiated into TGF-ß-enriched tissues. Furthermore, CXCL12+ TAMs recruited PD-L1+ Bregs via the CXCL12/CXCR4 axis, and CXCR4 expression was significantly positively correlated to PD-L1 expression in PD-L1+ Bregs. At last, we confirmed the communications among CAFs, Macrophages and B cells and their tumor-promoting effects by using an orthotopic mouse model of HCC. Immunosuppressive HCC TME involving cell-to-cell communications comprised MIF-secreting CAFs, CXCL12-secreting TAMs, and PD-L1-producing Bregs, and their regulation could be promising therapeutic targets in future immunotherapy for human HCC.

8.
Fitoterapia ; 175: 105881, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438054

RESUMO

Two previously undescribed cholestanol saponins, parpetiosides F - G (1-2), and six known analogs (3-8) were isolated from the rhizomes of Paris fargesii var. petiolata. Their structures were elucidated by extensive spectroscopic data analysis and chemical methods. Compound 1 was a rare 6/6/6/5/5 fused-rings cholestanol saponin with disaccharide moiety linked at C-26 of aglycone which was hardly seen in genus Paris. All of these compounds were discovered in this plant for the first time. In addition, the cytotoxicities of saponins (1-8) against three human cancer cell lines (U87, HepG2 and SGC-7901) were evaluated by CCK-8 method, and saponins 5-8 displayed certain cytotoxicities. The strong interactions between saponins 5-8 and SCUBE3, an oncogene for glioma cells, were displayed by molecular docking.


Assuntos
Antineoplásicos Fitogênicos , Colestanol , Simulação de Acoplamento Molecular , Rizoma , Saponinas , Rizoma/química , Humanos , Saponinas/isolamento & purificação , Saponinas/farmacologia , Saponinas/química , Estrutura Molecular , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Colestanol/farmacologia , Colestanol/química , Colestanol/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Melanthiaceae/química , China , Liliaceae/química
9.
World J Gastrointest Surg ; 16(1): 40-48, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328321

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common cancers worldwide. Morbidity and mortality have increased in recent years, making it an urgent issue to address. Laparoscopic radical surgery (LRS) is a crucial method for treating patients with GC; However, its influence on tumor markers is still under investigation. AIM: To determine the effects of LRS on patients with GC and their serum tumor markers. METHODS: The data of 194 patients treated at Chongqing University Cancer Hospital between January 2018 and January 2019 were retrospectively analyzed. Patients who underwent traditional open surgery and LRS were assigned to the control (n = 90) and observation groups (n = 104), respectively. Independent sample t-tests and χ2 tests were used to compare the two groups based on clinical efficacy, changes in tumor marker levels after treatment, clinical data, and the incidence of postoperative complications. To investigate the association between tumor marker levels and clinical efficacy in patients with GC, three-year recurrence rates in the two groups were compared. RESULTS: Patients in the observation group had a shorter duration of operation, less intraoperative blood loss, an earlier postoperative eating time, and a shorter hospital stay than those in the control group (P < 0.05). No significant difference was observed between the two groups regarding the number of lymph node dissections (P > 0.05). After treatment, the overall response rate in the control group was significantly lower than that in the observation group (P = 0.001). Furthermore, after treatment, the levels of carbohydrate antigen 19-9, cancer antigen 72-4, carcinoembryonic antigen, and cancer antigen 125 decreased significantly. The observation group also exhibited a significantly lower incidence rate of postoperative complications compared to the control group (P < 0.001). Additionally, the two groups did not significantly differ in terms of three-year survival and recurrence rates (P > 0.05). CONCLUSION: LRS effectively treats early gastric cancer by reducing intraoperative bleeding, length of hospital stays, and postoperative complications. It also significantly lowers tumor marker levels, thus improving the short-term prognosis of the disease.

10.
World J Surg Oncol ; 22(1): 51, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336734

RESUMO

BACKGROUND: Presurgical computed tomography (CT)-guided localization is frequently employed to reduce the thoracotomy conversion rate, while increasing the rate of successful sublobar resection of ground glass nodules (GGNs) via video-assisted thoracoscopic surgery (VATS). In this study, we compared the clinical efficacies of presurgical CT-guided hook-wire and indocyanine green (IG)-based localization of GGNs. METHODS: Between January 2018 and December 2021, we recruited 86 patients who underwent CT-guided hook-wire or IG-based GGN localization before VATS resection in our hospital, and compared the clinical efficiency and safety of both techniques. RESULTS: A total of 38 patients with 39 GGNs were included in the hook-wire group, whereas 48 patients with 50 GGNs were included in the IG group. There were no significant disparities in the baseline data between the two groups of patients. According to our investigation, the technical success rates of CT-based hook-wire- and IG-based localization procedures were 97.4% and 100%, respectively (P = 1.000). Moreover, the significantly longer localization duration (15.3 ± 6.3 min vs. 11.2 ± 5.3 min, P = 0.002) and higher visual analog scale (4.5 ± 0.6 vs. 3.0 ± 0.5, P = 0.001) were observed in the hook-wire patients, than in the IG patients. Occurrence of pneumothorax was significantly higher in hook-wire patients (27.3% vs. 6.3%, P = 0.048). Lung hemorrhage seemed higher in hook-wire patients (28.9% vs. 12.5%, P = 0.057) but did not reach statistical significance. Lastly, the technical success rates of VATS sublobar resection were 97.4% and 100% in hook-wire and IG patients, respectively (P = 1.000). CONCLUSIONS: Both hook-wire- and IG-based localization methods can effectively identified GGNs before VATS resection. Furthermore, IG-based localization resulted in fewer complications, lower pain scores, and a shorter duration of localization.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Verde de Indocianina , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/cirurgia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Cirurgia Torácica Vídeoassistida/métodos , Pulmão , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/cirurgia
11.
ESC Heart Fail ; 11(2): 1009-1021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234046

RESUMO

AIMS: Myocardial ischaemia-reperfusion injury (MIRI) contributes to serious myocardial injury and even death. Long non-coding RNAs (lncRNAs) have been reported to play pivotal roles in the occurrence and development of MIRI. Here, the detailed molecular mechanism of lncRNA SNHG1 in MIRI was explored. METHODS AND RESULTS: A cell model of MIRI was established through hypoxia/reoxygenation (H/R) stimulation. Cell viability and pyroptosis were evaluated utilizing MTT, PI staining, and flow cytometry. Interleukin (IL)-1ß and IL-18 secretion levels were examined by ELISA. The gene and protein expression were detected by RT-qPCR and western blot, respectively. Dual luciferase reporter gene, RIP and ChIP assays were performed to analyse the molecular interactions. The results showed that lncRNA SNHG1 overexpression alleviated H/R-induced HL-1 cell pyroptosis (all P < 0.05). LncRNA SNHG1 promoted KLF4 expression by sponging miR-137-3p. miR-137-3p silencing alleviated H/R-induced pyroptosis in HL-1 cells (all P < 0.05), which was abolished by KLF4 knockdown (all P < 0.05). KLF4 activated the AKT pathway by transcriptionally activating TRPV1 in HL-1 cells (all P < 0.05). TRPV1 knockdown reversed the alleviation of SNHG1 upregulation on H/R-induced pyroptosis in HL-1 cells (all P < 0.05). CONCLUSIONS: These results showed that lncRNA SNHG1 assuaged cardiomyocyte pyroptosis during MIRI progression by regulating the KLF4/TRPV1/AKT axis through sponging miR-137-3p. Our findings may provide novel therapeutic targets for MIRI.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Traumatismo por Reperfusão Miocárdica/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , MicroRNAs/genética , Miocárdio/metabolismo , Hipóxia , Canais de Cátion TRPV
12.
Int J Biol Macromol ; 261(Pt 2): 129640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262553

RESUMO

The study aims to fabricate MUF/paraffin microcapsules with lignin nanoparticles (LNPs)/ melamine-urea-formaldehyde (MUF) resin as hybrid shell material with different LNPs addition were synthesized in oil-in-water emulsion stabilized synergistically by styrene/maleic anhydride (SMA) and LNPs. The morphological characterization of LNPs was observed by transmission electron microscopy (TEM). The particle size of LNPs, the mean particle size and ξ potentials of SMA/LNPs mixture at pH =4.5 were investigated by zeta potential measurement. Field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), and differential scanning calorimetry (DSC) were characterized the morphologies, crystallography, chemical component, thermal stability and phase change properties of MUF/paraffin microcapsules with different LNPs addition. The results showed that MUF/paraffin microcapsules were spherical. The LNPs did not influence the chemical structure or crystal type of MUF/paraffin microcapsules. When the LNPs addition was 0.15 g, the melting enthalpy and crystallization enthalpy is respectively 130.03 and 121.92 J/g and the encapsulation efficiency of MicroC-15 is 61.04 %.


Assuntos
Lignina , Parafina , Triazinas , Cápsulas/química , Ureia , Espectroscopia de Infravermelho com Transformada de Fourier , Formaldeído/química
13.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293189

RESUMO

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that Cbfß, (subunit of a heterodimeric Cbfß/Runx1,Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfß in tamoxifen-induced Cbfßf/fCol2α1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/YAP signaling and TGF-ß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfß overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfß overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfß may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and TGFß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfß overexpression could be an effective strategy for treatment of OA.

14.
J Hazard Mater ; 465: 133450, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198868

RESUMO

The scientific advancement of water quality criteria (WQC) stands as one of the paramount challenges in ensuring the security of aquatic ecosystem. The region-dependent species distribution and water quality characteristics would impact the toxicity of pollutant, which would further affect the derivation of WQC across regions. Presently, however, numerous countries adhere to singular WQC values. The "One-size-fits-all" WQC value for a given pollutant may lead to either "over-protection" or "under-protection" of organisms in specific region. In this study, we used cadmium(Cd) pollution in surface waters of China as a case study to shed light on this issue. This study evaluated critical water quality parameters and species distribution characteristics to modify WQC for Cd across distinct regions, thus unveiling the geographical variations in ecological risk for Cd throughout China. Notably, regional disparities in ecological risk emerged a substantial correlation with water hardness, while species-related distinctions magnified these regional variations. After considering the aforementioned factors, the variation in long-term WQC among different areas reached 84-fold, while the divergence in risk quotient extended to 280-fold. This study delineated zones of both heightened and diminished ecological susceptibility of Cd, thereby establishing a foundation for regionally differentiated management strategies.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cádmio/análise , Ecossistema , Organismos Aquáticos , Poluentes Químicos da Água/análise , Qualidade da Água , China , Medição de Risco
15.
Medicine (Baltimore) ; 103(4): e36799, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277535

RESUMO

Pyroptosis plays a key role in the death of cells including cardiomyocytes, and it is associated with a variety of cardiovascular diseases. However, the role of pyroptosis-related genes (PRGs) in hypertrophic cardiomyopathy (HCM) is not well characterized. This study aimed to identify key biomarkers and explore the molecular mechanisms underlying the functions of the PRGs in HCM. The differentially expressed genes were identified by GEO2R, and the differentially expressed pyroptosis-related genes (DEPRGs) of HCM were identified by combining with PRGs. Enrichment analysis was performed using the "clusterProfiler" package of the R software. Protein-protein interactions (PPI) network analysis was performed using the STRING database, and hub genes were screened using cytoHubba. TF-miRNA coregulatory networks and protein-chemical interactions were analyzed using NetworkAnalyst. RT-PCR/WB was used for expression validation of HCM diagnostic markers. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western Blot (WB) were used to measure and compare the expression of the identified genes in the cardiac hypertrophy model and the control group. A total of 20 DEPRGs were identified, which primarily showed enrichment for the positive regulation of cytokine production, regulation of response to biotic stimulus, tumor necrosis factor production, and other biological processes. These processes primarily involved pathways related to Renin-angiotensin system, Adipocytokine signaling pathway and NF-kappa B signaling pathway. Then, a PPI network was constructed, and 8 hub genes were identified. After verification analysis, the finally identified HCM-related diagnostic markers were upregulated gene protein tyrosine phosphatase non-receptor type 11 (PTPN11), downregulated genes interleukin-1 receptor-associated kinase 3 (IRAK3), and annexin A2 (ANXA2). Further GSEA analysis revealed these 3 biomarkers primarily related to cardiac muscle contraction, hypertrophic cardiomyopathy, fatty acid degradation and ECM - receptor interaction. Moreover, we also elucidated the interaction network of these biomarkers with the miRNA network and known compounds, respectively. RT-PCR/WB results indicated that PTPN11 expression was significantly increased, and IRAK3 and ANXA2 expressions were significantly decreased in HCM. This study identified PTPN11, IRAK3, and ANXA2 as pyroptosis-associated biomarkers of HCM, with the potential to reveal the development and pathogenesis of HCM and could be potential therapeutic targets.


Assuntos
Cardiomiopatia Hipertrófica , MicroRNAs , Humanos , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Piroptose/genética , Biomarcadores , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Biologia Computacional/métodos
16.
Theranostics ; 14(3): 911-923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250045

RESUMO

Rationale: Novel immune-activating therapeutics for the treatment of glioblastoma multiforme (GBM) have shown potential for tumor regression and increased survival over standard therapies. However, immunotherapy efficacy remains inconsistent with response assessment being complicated by early treatment-induced apparent radiological tumor progression and slow downstream effects. This inability to determine early immunotherapeutic benefit results in a drastically decreased window for alternative, and potentially more effective, treatment options. The objective of this study is to evaluate the effects of combination immunotherapy on early CD8+ cell infiltration and its association with long term response in orthotopic syngeneic glioblastoma models. Methods: Luciferase positive GBM orthotopic mouse models (GSC005-luc) were imaged via [89Zr]-CD8 positron emission tomography (PET) one week following treatment with saline, anti-PD1, M002 oncolytic herpes simplex virus (oHSV) or combination immunotherapy. Subsequently, brains were excised, imaged via [89Zr]-CD8 ImmunoPET and evaluated though autoradiography and histology for H&E and CD8 immunohistochemistry. Longitudinal immunotherapeutic effects were evaluated through [89Zr]-CD8 PET imaging one- and three-weeks following treatment, with changes in tumor volume monitored on a three-day basis via bioluminescence imaging (BLI). Response classification was then performed based on long-term BLI signal changes. Statistical analysis was performed between groups using one-way ANOVA and two-sided unpaired T-test, with p < 0.05 considered significant. Correlations between imaging and biological validation were assessed via Pearson's correlation test. Results: [89Zr]-CD8 PET standardized uptake value (SUV) quantification was correlated with ex vivo SUV quantification (r = 0.61, p < 0.01), autoradiography (r = 0.46, p < 0.01), and IHC tumor CD8+ cell density (r = 0.55, p < 0.01). Classification of therapeutic responders, via bioluminescence signal, revealed a more homogeneous CD8+ immune cell distribution in responders (p < 0.05) one-week following immunotherapy. Conclusions: Assessment of early CD8+ cell infiltration and distribution in the tumor microenvironment provides potential imaging metrics for the characterization of oHSV and checkpoint blockade immunotherapy response in GBM. The combination therapies showed enhanced efficacy compared to single agent immunotherapies. Further development of immune-focused imaging methods can provide clinically relevant metrics associated with immune cell localization that can inform immunotherapeutic efficacy and subsequent treatment response in GBM patients.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Tomografia Computadorizada por Raios X , Imunoterapia , Tomografia por Emissão de Pósitrons , Linfócitos T CD8-Positivos , Microambiente Tumoral
17.
Cancer Lett ; 584: 216643, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246220

RESUMO

In the realm of cancer therapeutics and resistance, kinases play a crucial role, particularly in gastric cancer (GC). Our study focused on platinum-based chemotherapy resistance in GC, revealing a significant reduction in homeodomain-interacting protein kinase 3 (HIPK3) expression in platinum-resistant tumors through meticulous analysis of transcriptome datasets. In vitro and in vivo experiments demonstrated that HIPK3 knockdown enhanced tumor proliferation and metastasis, while upregulation had the opposite effect. We identified the myocyte enhancer factor 2C (MEF2C) as a transcriptional regulator of HIPK3 and uncovered HIPK3's role in downregulating the morphogenesis regulator microtubule-associated protein (MAP7) through ubiquitination. Phosphoproteome profiling revealed HIPK3's inhibitory effects on mTOR and Wnt pathways crucial in cell proliferation and movement. A combined treatment strategy involving oxaliplatin, rapamycin, and IWR1-1-endo effectively overcame platinum resistance induced by reduced HIPK3 expression. Monitoring HIPK3 levels could serve as a GC malignancy and platinum resistance indicator, with our proposed treatment strategy offering novel avenues for reversing resistance in gastric cancer.


Assuntos
Platina , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Oxaliplatina/farmacologia , Progressão da Doença , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
18.
CNS Neurosci Ther ; 30(3): e14466, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37752881

RESUMO

AIM: The three-phase enriched environment (EE) intervention paradigm has been shown to improve learning and memory function after cerebral ischemia, but the neuronal mechanisms are still unclear. This study aimed to investigate the hippocampal-cortical connectivity and the metabolic interactions between neurons and astrocytes to elucidate the underlying mechanisms of EE-induced memory improvement after stroke. METHODS: Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) or sham surgery and housed in standard environment or EE for 30 days. Memory function was examined by Morris water maze (MWM) test. Magnetic resonance imaging (MRI) was conducted to detect the structural and functional changes. [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) was conducted to detect brain energy metabolism. PET-based brain connectivity and network analysis was performed to study the changes of hippocampal-cortical connectivity. Astrocyte-neuron metabolic coupling, including gap junction protein connexin 43 (Cx43), glucose transporters (GLUTs), and monocarboxylate transporters (MCTs), was detected by histological studies. RESULTS: Our results showed EE promoted memory function improvement, protected structure integrity, and benefited energy metabolism after stroke. More importantly, EE intervention significantly increased functional connectivity between the hippocampus and peri-hippocampal cortical regions, and specifically regulated the level of Cx43, GLUTs and MCTs in the hippocampus and cortex. CONCLUSIONS: Our results revealed the three-phase enriched environment paradigm enhanced hippocampal-cortical connectivity plasticity and ameliorated post-stroke memory deficits. These findings might provide some new clues for the development of EE and thus facilitate the clinical transformation of EE.


Assuntos
Conexina 43 , Acidente Vascular Cerebral , Ratos , Animais , Conexina 43/metabolismo , Imageamento por Ressonância Magnética , Meio Ambiente , Encéfalo/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Hipocampo/metabolismo , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Transtornos da Memória/terapia , Aprendizagem em Labirinto/fisiologia
19.
Med Phys ; 51(4): 2563-2577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37987563

RESUMO

OBJECTIVES: A circumferential resection margin (CRM) is an independent risk factor for local recurrence, distant metastasis, and poor overall survival of rectal cancer. In this study, we developed and validated a radiomics prediction model to predict perioperative surgical margins in patients with middle and low rectal cancer following neoadjuvant treatment and for decisions about treatment plans for patients. METHODS: This study retrospectively analyzed 275 patients from center 1(training cohort) and 120 patients from center 2(verification cohort) with rectal cancer diagnosed at two centers from July 2020 to July 2022 who underwent neoadjuvant therapy and had their CRM status confirmed by preoperative high-resolution magnetic resonance imaging (MRI) scans. Radiomics signatures were extracted and screened from MRI images and a radiomics signature was built by the least absolute shrinkage and selection operator (LASSO) logistic regression model, which was combined with clinical signatures to construct a nomogram. The receiver operating characteristic (ROC) curve and area under the curve (AUC) value, sensitivity, specificity, positive predictive value, negative predictive value, and calibration curve were used to evaluate the predictive performance of the model. RESULTS: In our research, the combined model has the best performance. In the training group, the radiomics model based on high-spatial-resolution T2-weighted imaging (HR-T2WI), clinical model and combined model demonstrated an AUC of 0.819 (0.802-0.833), 0.843 (0.822-0.861), and 0.910 (0.880-0.940), respectively. In the validation group, they demonstrated an AUC of 0.745 (0.715-0.788), 0.827 (0.798-0.850), and 0.848 (0.779-0.917), respectively. The calibration curve confirmed the clinical applicability of the model. CONCLUSIONS: The individualized prediction model established by combining radiomics signatures and clinical signatures can efficiently and objectively predict perioperative margin invasion in patients with middle and low rectal cancer.


Assuntos
Margens de Excisão , Neoplasias Retais , Humanos , Estudos Retrospectivos , Radiômica , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/cirurgia , Neoplasias Retais/patologia
20.
Adv Mater ; 36(11): e2311246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38123765

RESUMO

Effective treatment of deep-seated tumors relies on enhanced drug penetration in transdermal drug delivery systems. While microneedles (MNs) and iontophoresis techniques have shown improved transdermal drug delivery efficiency, challenges such as skin elasticity, high electrical resistance of the stratum corneum, and external power supply requirements hinder their efficacy in treating deep-seated tumors. In this study, a wearable, self-powered MN patch that integrates a flexible triboelectric nanogenerator (F-TENG) is presented, aimed at advancing deep-seated tumor therapy. MNs are composed of water-soluble materials mixed with negatively charged pH-responsive nanoparticles (NPs) loaded with therapeutic drugs. The F-TENG harnesses personal mechanical movements generate electrical energy. Leveraging the advantages of both MNs and F-TENG, therapeutic NPs can penetrate deep skin locations upon MN patch insertion, releasing drugs rapidly in acidic tumor tissues. Owing to these features, a single administration of the integrated MN-patch in a mouse model with deep-seated melanoma exhibits superior therapeutic efficacy in inhibiting deep-located tumor compared to using the MN-patch alone, indicating promising potential for treating tumors at deep sites.


Assuntos
Melanoma , Dispositivos Eletrônicos Vestíveis , Animais , Camundongos , Melanoma/tratamento farmacológico , Agulhas , Administração Cutânea , Pele , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA