Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(4): 256, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600092

RESUMO

Stromal fibroblasts are a major stem cell niche component essential for organ formation and cancer development. Fibroblast heterogeneity, as revealed by recent advances in single-cell techniques, has raised important questions about the origin, differentiation, and function of fibroblast subtypes. In this study, we show in mammary stromal fibroblasts that loss of the receptor tyrosine kinase (RTK) negative feedback regulators encoded by Spry1, Spry2, and Spry4 causes upregulation of signaling in multiple RTK pathways and increased extracellular matrix remodeling, resulting in accelerated epithelial branching. Single-cell transcriptomic analysis demonstrated that increased production of FGF10 due to Sprouty (Spry) loss results from expansion of a functionally distinct subgroup of fibroblasts with the most potent branching-promoting ability. Compared to their three independent lineage precursors, fibroblasts in this subgroup are "activated," as they are located immediately adjacent to the epithelium that is actively undergoing branching and invasion. Spry genes are downregulated, and activated fibroblasts are expanded, in all three of the major human breast cancer subtypes. Together, our data highlight the regulation of a functional subtype of mammary fibroblasts by Spry genes and their essential role in epithelial morphogenesis and cancer development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Diferenciação Celular/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fibroblastos/metabolismo
2.
Cell Rep ; 38(7): 110375, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172155

RESUMO

Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin ß1 and inhibits its downstream signaling, and Integrin ß1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin ß1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct.


Assuntos
Epitélio , Glicoproteínas , Integrina beta1 , Glândulas Mamárias Animais , Morfogênese , Transdução de Sinais , Animais , Movimento Celular/genética , Polaridade Celular , Proliferação de Células , Regulação para Baixo , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Feminino , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/metabolismo , Integrina beta1/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Ligação Proteica
3.
STAR Protoc ; 2(3): 100778, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34485944

RESUMO

We recently established an in vitro culture system in which mammary gland organoid undergoes directional migration in response to an FGF10 concentration gradient. Here, we describe a step-by-step protocol for preparing organoids, the setup of the 3D culture system, and the image acquisition approach. The technical difficulties in conducting the 3D migration assay are choosing epithelial organoids of appropriate sizes and manually paring organoids and beads pre-soaked in FGF10 within a desirable distance (∼100 µm). For complete details on the use and execution of this protocol, please refer to Lu et al. (2020).


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Movimento Celular/fisiologia , Células Epiteliais , Glândulas Mamárias Animais , Organoides , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Epitélio/fisiologia , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/fisiologia , Camundongos , Organoides/citologia , Organoides/fisiologia
4.
Front Cell Dev Biol ; 9: 704939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540829

RESUMO

Bundled with various kinds of adhesion molecules and anchored to the basement membrane, the epithelium has historically been considered as an immotile tissue and, to migrate, it first needs to undergo epithelial-mesenchymal transition (EMT). Since its initial description more than half a century ago, the EMT process has fascinated generations of developmental biologists and, more recently, cancer biologists as it is believed to be essential for not only embryonic development, organ formation, but cancer metastasis. However, recent progress shows that epithelium is much more motile than previously realized. Here, we examine the emerging themes in epithelial collective migration and how this has impacted our understanding of EMT.

5.
Cell Rep ; 33(2): 108246, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053348

RESUMO

Collective migration is essential for development, wound repair, and cancer metastasis. For most collective systems, "leader cells" determine both the direction and the power of the migration. It has remained unclear, however, how the highly polarized vertebrate epithelium migrates directionally during branching morphogenesis. We show here that, unlike in other systems, front-rear polarity of the mammary epithelium is set up by preferential cell proliferation in the front in response to the FGF10 gradient. This leads to frontal stratification, loss of apicobasal polarity, and leader cell formation. Leader cells are a dynamic population and move faster and more directionally toward the FGF10 signal than do follower cells, partly because of their intraepithelial protrusions toward the signal. Together, our data show that directional migration of the mammary epithelium is a unique multistep process and that, despite sharing remarkable cellular and molecular similarities, vertebrate and invertebrate epithelial branching are fundamentally distinct processes.


Assuntos
Movimento Celular , Polaridade Celular , Epitélio/fisiologia , Vertebrados/fisiologia , Animais , Proliferação de Células , Extensões da Superfície Celular/metabolismo , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Fator 10 de Crescimento de Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células Madin Darby de Rim Canino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Organoides/metabolismo , Transdução de Sinais
6.
Wiley Interdiscip Rev Dev Biol ; 8(6): e357, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31322329

RESUMO

Tremendous progress has been made in the field of stem cell biology. This is in part due to the emergence of various vertebrate organs, including the mammary gland, as an amenable model system for adult stem cell studies and remarkable technical advances in single cell technology and modern genetic lineage tracing. In the current review, we summarize the recent progress in mammary gland stem cell biology at both the adult and embryonic stages. We discuss current challenges and controversies, and potentially new and exciting directions for future research. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.


Assuntos
Diferenciação Celular , Linhagem da Célula , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Regeneração , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Feminino , Humanos , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Células-Tronco/fisiologia
7.
Thromb Res ; 160: 58-65, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29101791

RESUMO

One of the major contributors to sickle cell disease (SCD) pathobiology is the hemolysis of sickle red blood cells (RBCs), which release free hemoglobin and platelet agonists including adenosine 5'-diphosphate (ADP) into the plasma. While platelet activation/aggregation may promote tissue ischemia and pulmonary hypertension in SCD, modulation of sickle platelet dysfunction remains poorly understood. Calpain-1, a ubiquitous calcium-activated cysteine protease expressed in hematopoietic cells, mediates aggregation of platelets in healthy mice. We generated calpain-1 knockout Townes sickle (SSCKO) mice to investigate the role of calpain-1 in steady state and hypoxia/reoxygenation (H/R)-induced sickle platelet activation and aggregation, clot retraction, and pulmonary arterial hypertension. Using multi-electrode aggregometry, which measures platelet adhesion and aggregation in whole blood, we determined that steady state SSCKO mice exhibit significantly impaired PAR4-TRAP-stimulated platelet aggregation as compared to Townes sickle (SS) and humanized control (AA) mice. Interestingly, the H/R injury induced platelet hyperactivity in SS and SSCKO, but not AA mice, and partially rescued the aggregation defect in SSCKO mice. The PAR4-TRAP-stimulated GPIIb-IIIa (αIIbß3) integrin activation was normal in SSCKO platelets suggesting that an alternate mechanism mediates the impaired platelet aggregation in steady state SSCKO mice. Taken together, we provide the first evidence that calpain-1 regulates platelet hyperactivity in sickle mice, and may offer a viable pharmacological target to reduce platelet hyperactivity in SCD.


Assuntos
Anemia Falciforme/sangue , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Calpaína/sangue , Ativação Plaquetária/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Blood ; 128(1): 93-103, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27073223

RESUMO

Dematin is a relatively low abundance actin binding and bundling protein associated with the spectrin-actin junctions of mature erythrocytes. Primary structure of dematin includes a loosely folded core domain and a compact headpiece domain that was originally identified in villin. Dematin's actin binding properties are regulated by phosphorylation of its headpiece domain by cyclic adenosine monophosphate-dependent protein kinase. Here, we used a novel gene disruption strategy to generate the whole body dematin gene knockout mouse model (FLKO). FLKO mice, while born at a normal Mendelian ratio, developed severe anemia and exhibited profound aberrations of erythrocyte morphology and membrane stability. Having no apparent effect on primitive erythropoiesis, FLKO mice show significant enhancement of erythroblast enucleation during definitive erythropoiesis. Using membrane protein analysis, domain mapping, electron microscopy, and dynamic deformability measurements, we investigated the mechanism of membrane instability in FLKO erythrocytes. Although many membrane and cytoskeletal proteins remained at their normal levels, the major peripheral membrane proteins spectrin, adducin, and actin were greatly reduced in FLKO erythrocytes. Our results demonstrate that dematin plays a critical role in maintaining the fundamental properties of the membrane cytoskeleton complex.


Assuntos
Anemia Hemolítica , Proteínas do Citoesqueleto/genética , Citoesqueleto , Membrana Eritrocítica , Deleção de Genes , Anemia Hemolítica/genética , Anemia Hemolítica/metabolismo , Anemia Hemolítica/patologia , Animais , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Membrana Eritrocítica/genética , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Espectrina/genética , Espectrina/metabolismo
9.
Cell Cycle ; 14(3): 437-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659039

RESUMO

The BRCA1 tumor suppressor plays an important role in homologous recombination (HR)-mediated DNA double-strand-break (DSB) repair. BRCA1 is phosphorylated by Chk2 kinase upon γ-irradiation, but the role of Chk2 phosphorylation is not understood. Here, we report that abrogation of Chk2 phosphorylation on BRCA1 delays end resection and the dispersion of BRCA1 from DSBs but does not affect the assembly of Mre11/Rad50/NBS1 (MRN) and CtIP at DSBs. Moreover, we show that BRCA1 is ubiquitinated by SCF(Skp2) and that abrogation of Chk2 phosphorylation impairs its ubiquitination. Our study suggests that BRCA1 is more than a scaffold protein to assemble HR repair proteins at DSBs, but that Chk2 phosphorylation of BRCA1 also serves as a built-in clock for HR repair of DSBs. BRCA1 is known to inhibit Mre11 nuclease activity. SCF(Skp2) activity appears at late G1 and peaks at S/G2, and is known to ubiquitinate phosphodegron motifs. The removal of BRCA1 from DSBs by SCF(Skp2)-mediated degradation terminates BRCA1-mediated inhibition of Mre11 nuclease activity, allowing for end resection and restricting the initiation of HR to the S/G2 phases of the cell cycle.


Assuntos
Proteína BRCA1/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Complexos Multiproteicos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteína de Replicação A/metabolismo , Fatores de Tempo , Ubiquitinação/efeitos dos fármacos
10.
J Biol Chem ; 287(49): 41014-22, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23086937

RESUMO

BRCA1 mutations account for a significant proportion of familial breast and ovarian cancers. In addition, reduced BRCA1 protein is associated with sporadic cancer cases in these tissues. At the cellular level, BRCA1 plays a critical role in multiple cellular functions such as DNA repair and cell cycle checkpoint control. Its protein level is regulated in a cell cycle-dependent manner. However, regulation of BRCA1 protein stability is not fully understood. Our earlier study showed that the amino terminus of BRCA1 harbors a degron sequence that is sufficient and necessary for conferring BRCA1 degradation. In the current study, we used mass spectrometry to identify Skp1 that regulates BRCA1 protein stability. Small interfering RNA screening that targets all human F-box proteins uncovered FBXO44 as an important protein that influences BRCA1 protein level. The Skp1-Cul1-F-box-protein44 (SCF(FBXO44)) complex ubiquitinates full-length BRCA1 in vitro. Furthermore, the N terminus of BRCA1 mediates the interaction between BRCA1 and FBXO44. Overexpression of SCF(FBXO44) reduces BRCA1 protein level. Taken together, our work strongly suggests that SCF(FBXO44) is an E3 ubiquitin ligase responsible for BRCA1 degradation. In addition, FBXO44 expression pattern in breast carcinomas suggests that SCF(FBXO44)-mediated BRCA1 degradation might contribute to sporadic breast tumor development.


Assuntos
Proteína BRCA1/química , Neoplasias da Mama/metabolismo , Proteínas F-Box/química , Regulação Neoplásica da Expressão Gênica , Ubiquitina/química , Ciclo Celular , Reparo do DNA , Proteínas F-Box/fisiologia , Feminino , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Acta Pharmacol Sin ; 32(3): 368-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21372828

RESUMO

AIM: To examine whether attenuated Salmonella typhimurium (S typhimurium) could be used as an anti-cancer agent or a tumor-targeting vehicle for delivering shRNA-expressing pDNA into cancer cells in a mouse tumor model. METHODS: Mouse bladder transitional cancer cell line (BTT-T739) expressing GFP was used, in which the GFP expression level served as an indicator of RNA interference (RNAi). BTT-T739-GFP tumor-bearing mice (4-6 weeks) were treated with S typhimurium carrying plasmids encoding shRNA against gfp or scrambled shRNA. The mRNA and protein expression levels of GFP were assessed 5 d after the bacteria administration, and the antitumor effects of S typhimurium were evaluated. RESULTS: In BTT-T739-GFP tumor-bearing mice, S typhimurium (1×10(9) cfu, po) preferentially accumulated within tumors for as long as 40 d, and formed a tumor-to-normal tissue ratio that exceeded 1000/1. S typhimurium carrying plasmids encoding shRNA against gfp inhibited the expression of GFP in tumor cells by 73.4%. Orally delivered S typhimurium significantly delayed tumor growth and prolonged the survival of tumor-bearing mice. CONCLUSION: This study demonstrates that attenuated S typhimurium can be used for both delivering shRNA-expressing vectors into tumor cells and eliciting RNAi, thus exerting anti-tumor activity, which may represent a new strategy for the treatment of solid tumors.


Assuntos
Vetores Genéticos , Interferência de RNA , RNA Interferente Pequeno/genética , Salmonella typhimurium/genética , Neoplasias da Bexiga Urinária/terapia , Animais , Linhagem Celular Tumoral , Camundongos , RNA Interferente Pequeno/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade
12.
J Steroid Biochem Mol Biol ; 123(1-2): 71-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21087664

RESUMO

Germline mutations in BRCA1 predispose women to early onset of breast and ovarian cancers. Findings from previous studies support the notion that the tissue- and gender-specific tumor suppression function of BRCA1 is associated with its role in negative regulation of aromatase expression, the rate-limiting step in estrogen biosynthesis. The molecular mechanism of BRCA1 in regulating aromatase promoter activity remains to be elucidated. In this study, we demonstrate that, in an ovarian granulosa cell line KGN, steroidogenic factor 1 (SF-1) is required for aromatase PII promoter basal activity as well as the elevated aromatase expression mediated by BRCA1 knockdown. Furthermore, BRCA1 in KGN cells exists mainly as a heterodimer with BARD1. We provide evidence that the BRCA1/BARD1 complex interacts with SF-1 both in vivo and in vitro. However, the intrinsic ubiquitin E3 ligase activity of BRCA1/BARD1 does not appear to contribute to ubiquitynation of SF-1. We propose that the interaction between SF-1 and BRCA1/BARD1 may recruit BRCA1/BARD1 complex to the aromatase PII promoter for BRCA1/BARD1-mediate transcriptional repression.


Assuntos
Aromatase/genética , Proteína BRCA1/metabolismo , Fator Esteroidogênico 1/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína BRCA1/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Humanos , Fator Esteroidogênico 1/genética , Transfecção , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
13.
Int J Biomed Sci ; 4(4): 260-265, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19568323

RESUMO

Aromatase is the rate-limiting enzyme in estrogen biosynthesis and a key target in breast cancer treatment. Its ovary-specific promoter, PII, is induced in response to protein kinase A (PKA) activation. It has been proposed that breast cancer susceptibility gene 1, BRCA1, is involved in negative regulation of aromatase PII activity. Surprisingly, inhibition of PKA pathway by inhibitor H89 elevates basal aromatase expression while abolishes cAMP-mediated aromatase induction in an ovarian granulosa cell line, KGN. In this report, we decipher the mechanism by which the PKA pathway negatively regulates aromatase basal expression. We show that PKA pathway plays a positive role in the expression of BRCA1. H89 effectively reduces endogenous BRCA1 mRNA levels as well as reporter gene expression from a BRCA1 promoter. Mutation of a cAMP-responsive element (CRE) in the BRCA1 promoter reduces BRCA1 expression. Chromatin immunoprecipitation (ChIP) shows that CRE-binding protein, CREB, binds to the BRCA1 promoter. Furthermore, knockdown of CREB in KGN cells leads to decreased BRCA1 level as well as elevated basal aromatase mRNA expression. These data demonstrate that both the CRE site in the BRCA1 promoter and CREB are required for BRCA1 constitutive expression. Our study suggests that PKA pathway exerts its negative impact on basal aromatase expression indirectly by contributing to the constitutive expression of BRCA1.

14.
Am J Physiol Endocrinol Metab ; 292(1): E246-52, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16940470

RESUMO

Adipose tissue provides an important extragonadal source of estrogen. Obesity-associated elevation of estrogen production increases risk of breast cancer in postmenopausal women. Aromatase (CYP19), which converts androgen to estrogen, is a key enzyme in estrogen biosynthesis. In normal adipose tissue, transcription of the aromatase gene is initiated from a relatively weak adipose-specific promoter (I.4). However, in breast cancer, a switch of promoter utilization from I.4 to a strong ovary-specific promoter, PII, leads to increased aromatase expression and, hence, elevated estrogen production. Here, we report an intriguing relationship between the breast cancer susceptibility gene BRCA1 and aromatase expression in human adipose stromal cells (ASCs). Upon stimulation by phorbol ester or dexamethasone, increased aromatase expression in ASCs was accompanied by significant reduction of the BRCA1 level. In addition, adipogenesis-induced aromatase expression was also inversely correlated with BRCA1 abundance. Downregulation of BRCA1 expression in response to various stimuli was through distinct transcription or posttranscription mechanisms. Importantly, siRNA-mediated knockdown of BRCA1 led to specific activation of the breast cancer-associated PII promoter. Therefore, in addition to its well-characterized activities in breast epithelial cells, a role of BRCA1 in modulation of estrogen biosynthesis in ASCs may also contribute to its tissue-specific tumor suppressor function.


Assuntos
Tecido Adiposo/enzimologia , Aromatase/genética , Proteína BRCA1/fisiologia , Regiões Promotoras Genéticas , Células Estromais/enzimologia , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Aromatase/metabolismo , Proteína BRCA1/metabolismo , Células Cultivadas , Dexametasona/farmacologia , Feminino , Humanos , Pessoa de Meia-Idade , Especificidade de Órgãos , Ovário/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Ativação Transcricional
15.
Mol Endocrinol ; 21(3): 651-63, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17185394

RESUMO

Germ-line mutations in BRCA1 predispose women to early-onset, familial breast and ovarian cancers. However, BRCA1 expression is not restricted to breast and ovarian epithelial cells. For example, ovarian BRCA1 expression is enriched in ovarian granulosa cells, which are responsible for ovarian estrogen production in premenopausal women. Furthermore, recent tissue culture and animal studies suggest a functional role of BRCA1 in ovarian granulosa cells. Although levels of BRCA1 are known to fluctuate significantly during folliculogenesis and steroidogenesis, the mechanism by which BRCA1 expression is regulated in granulosa cells remains to be elucidated. Here we show that the ubiquitin-proteasome degradation pathway plays a significant role in the coordinated protein stability of BRCA1 and its partner BARD1 in ovarian granulosa cells. Our work identifies the amino-terminal RING domain-containing region of BRCA1 as the degron sequence that is both necessary and sufficient for polyubiquitination and proteasome-mediated protein degradation. Interestingly, mutations in the RING domain that abolish the ubiquitin E3 ligase activity of BRCA1 do not affect its own ubiquitination or degradation in ovarian granulosa cells. The proteasome-mediated degradation of BRCA1 and BARD1 also occurs during the cAMP-dependent steroidogenic process. Thus, the dynamic changes of BRCA1/BARD1 protein stability in ovarian granulosa cells provide an excellent paradigm for investigating the regulation of this protein complex under physiological conditions.


Assuntos
Proteína BRCA1/metabolismo , Células da Granulosa/metabolismo , Processamento de Proteína Pós-Traducional , Esteroides/biossíntese , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Proteína BRCA1/química , Sítios de Ligação , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Ratos , Ratos Wistar
16.
Oncogene ; 24(56): 8343-8, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16170371

RESUMO

Mutations in BRCA1 increase risks of familial breast and ovarian cancers, particularly among premenopausal women. While BRCA1 plays an active role in DNA repair, this function alone may not be sufficient to explain why BRCA1-associated tumors predominantly occur in estrogen-responsive tissues. Aromatase is the rate-limiting enzyme in estrogen biosynthesis and a key target in breast cancer treatment. Aromatase expression in ovarian granulosa cells dictates levels of circulating estrogen in premenopausal women, and its aberrant overexpression in breast adipose tissues promotes breast cancer growth. Here, we show that BRCA1 modulates aromatase expression in ovarian granulosa cells and primary preadipocytes. The cyclic AMP-dependent expression of aromatase in ovarian granulosa cells is inversely correlated with the protein level of BRCA1. Importantly, transient knockdown of BRCA1 enhances aromatase expression in both ovarian granulosa cells and primary preadipocytes. We propose that BRCA1 deficiency in epithelial and certain nonepithelial cells may result in combined effects of aberrant estrogen biosynthesis and compromised DNA repair capability, which in turn may lead to specific cancers in the breast and ovary.


Assuntos
Aromatase/genética , Proteína BRCA1/fisiologia , Neoplasias da Mama/prevenção & controle , Neoplasias Ovarianas/prevenção & controle , Adipócitos/enzimologia , Animais , Aromatase/biossíntese , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Linhagem Celular , Linhagem Celular Tumoral , Reparo do DNA/fisiologia , Estrogênios/biossíntese , Feminino , Células da Granulosa/enzimologia , Humanos , Camundongos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas
17.
J Cell Biochem ; 96(4): 751-9, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16088961

RESUMO

In response to gonadotropins, the elevated level of intracellular-cyclic AMP (cAMP) in ovarian granulosa cells triggers an ordered activation of multiple ovarian genes, which in turn promotes various ovarian functions including folliculogenesis and steroidogenesis. Identification and characterization of transcription factors that control ovarian gene expression are pivotal to the understanding of the molecular basis of the tissue-specific gene regulation programs. The recent discovery of the mouse TATA binding protein (TBP)-associated factor 105 (TAF(II)105) as a gonad-selective transcriptional co-activator strongly suggests that general transcription factors such as TFIID may play a key role in regulating tissue-specific gene expression. Here we show that the human TAF(II)105 protein is preferentially expressed in ovarian granulosa cells. We also identified a novel TAF(II)105 mRNA isoform that results from alternative exon inclusion and is predicted to encode a dominant negative mutant of TAF(II)105. Following stimulation by the adenylyl cyclase activator forskolin, TAF(II)105 in granulosa cells undergoes rapid and transient phosphorylation that is dependent upon protein kinase A (PKA). Thus, our work suggests that pre-mRNA processing and post-translational modification represent two important regulatory steps for the gonad-specific functions of human TAF(II)105.


Assuntos
AMP Cíclico/metabolismo , Gônadas/metabolismo , Células da Granulosa/metabolismo , Ovário/citologia , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Éxons/genética , Feminino , Expressão Gênica , Humanos , Íntrons/genética , Dados de Sequência Molecular , Especificidade de Órgãos , Fosforilação , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/genética
18.
Genes Dev ; 18(17): 2134-46, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15342491

RESUMO

Estrogen receptor alpha (ERalpha) signaling is paramount for normal mammary gland development and function and the repression of breast cancer. ERalpha function in gene regulation is mediated by a number of coactivators and corepressors, most of which are known to modify chromatin structure and/or influence the assembly of the regulatory complexes at the level of transcription initiation. Here we describe a novel mechanism of attenuating the ERalpha activity. We show that cofactor of BRCA1 (COBRA1), an integral subunit of the human negative elongation factor (NELF), directly binds to ERalpha and represses ERalpha-mediated transcription. Reduction of the endogenous NELF proteins in breast cancer cells using small interfering RNA results in elevated ERalpha-mediated transcription and enhanced cell proliferation. Chromatin immunoprecipitation reveals that recruitment of COBRA1 and the other NELF subunits to endogenous ERalpha-responsive promoters is greatly stimulated upon estrogen treatment. Interestingly, COBRA1 does not affect the estrogen-dependent assembly of transcription regulatory complexes at the ERalpha-regulated promoters. Rather, it causes RNA polymerase II (RNAPII) to pause at the promoter-proximal region, which is consistent with its in vitro biochemical activity. Therefore, our in vivo work defines the first corepressor of nuclear receptors that modulates ERalpha-dependent gene expression by stalling RNAPII. We suggest that this new level of regulation may be important to control the duration and magnitude of a rapid and reversible hormonal response.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Northern Blotting , Células Cultivadas , Cromatina/metabolismo , Receptor alfa de Estrogênio , Humanos , Imuno-Histoquímica , Luciferases , Plasmídeos/genética , Testes de Precipitina , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Estrogênio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA