Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chin J Integr Med ; 29(12): 1111-1120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37610554

RESUMO

OBJECTIVE: To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms. METHODS: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo. RESULTS: The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01). CONCLUSION: Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Peixe-Zebra , Inibidor de NF-kappaB alfa/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição STAT3/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
Phytomedicine ; 119: 154977, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506573

RESUMO

BACKGROUND: Dengue virus (DENV) is a major public health threat. However, there are no specific therapeutic drugs for DENV. Many Chinese heat-cleaning formulas, such as Liang-Ge-San (LGS), have been frequently used in the virus-induced diseases. The antiviral effect of LGS has not been reported yet. PURPOSE: In this study, the effect of LGS on the inhibition of dengue virus serotype 2 (DENV-2) was investigated and the relevant mechanism was explored. METHODS: High-performance liquid chromatography was applied to analyze the chemical characterization of LGS. The in vitro antiviral activities of LGS against DENV-2 were evaluated by time-of-drug-addition assay. The binding of heat shock protein 70 (Hsp70) and envelope (E) protein or caveolin1 (Cav1) were analyzed by immunofluorescence and immunoprecipitation assays. Then the role of Cav1 in the anti-DENV-2 effects of LGS was further examined. DENV-2 infected Institute of Cancer Research suckling mice (n = 10) and AG129 mice (n = 8) were used to examine the protective effects of LGS. RESULTS: It was found that geniposide, liquiritin, forsythenside A, forsythin, baicalin, baicalein, rhein, and emodin maybe the characteristic components of LGS. LGS inhibited the early stage of DENV-2 infection, decreased the expression levels of viral E and non-structural protein 1 (NS1) proteins. LGS also reduced E protein and Hsp70 binding and attenuated the translocation of Hsp70 from cytoplasm to the cell membrane. Moreover, LGS decreased the binding of Hsp70 to Cav1. Further study showed that the overexpression of Cav1 reversed LGS-mediated E protein and Hsp70 inhibition in the plasma membrane. In the in vivo study, LGS was highly effective in prolonging the survival time, reducing viral loads. CONCLUSION: This work demonstrates for the first time that LGS exerts anti-DENV-2 activity in vitro and in vivo. LGS decreases DENV-2-stimulated cytoplasmic Hsp70 translocation into the plasma membrane by Cav1 inhibition, thereby inhibiting the early stage of virus infection. These findings indicate that LGS may be a candidate for the treatment of DENV.


Assuntos
Vírus da Dengue , Dengue , Animais , Camundongos , Dengue/tratamento farmacológico , Proteínas de Choque Térmico HSP70 , Sorogrupo , Membrana Celular , Antivirais/farmacologia , Antivirais/uso terapêutico , Citoplasma/metabolismo
4.
Toxicol Appl Pharmacol ; 407: 115252, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987027

RESUMO

Acute lung injury (ALI) is a severe disease for which effective drugs are still lacking at present. Forsythia suspensa is a traditional Chinese medicine commonly used to relieve respiratory symptoms in China, but its functional mechanisms remain unclear. Therefore, forsythoside A (FA), the active constituent of F. suspensa, was studied in the present study. Inflammation models of type II alveolar epithelial MLE-12 cells and BALB/c mice stimulated by lipopolysaccharide (LPS) were established to explore the effects of FA on ALI and the underlying mechanisms. We found that FA inhibited the production of monocyte chemoattractant protein-1 (MCP-1/CCL2) in LPS-stimulated MLE-12 cells in a dose-dependent manner. Moreover, FA decreased the adhesion and migration of monocytes to MLE-12 cells. Furthermore, miR-124 expression was upregulated after FA treatment. The luciferase report assay showed that miR-124 mimic reduced the activity of CCL2 in MLE-12 cells. However, the inhibitory effects of FA on CCL2 expression and monocyte adhesion and migration to MLE-12 cells were counteracted by treatment with a miR-124 inhibitor. Critically, FA ameliorated LPS-induced pathological damage, decreased the serum levels of tumor necrosis factor-α and interleukin-6, and inhibited CCL2 secretion and macrophage infiltration in lungs in ALI mice. Meanwhile, administration of miR-124 inhibitor attenuated the protective effects of FA. The present study suggests that FA attenuates LPS-induced adhesion and migration of monocytes to type II alveolar epithelial cells though upregulating miR-124, thereby inhibiting the expression of CCL2. These findings indicate that the potential application of FA is promising and that miR-124 mimics could also be used in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glicosídeos/farmacologia , MicroRNAs/biossíntese , Monócitos/efeitos dos fármacos , Alvéolos Pulmonares/citologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/biossíntese , Relação Dose-Resposta a Droga , Glicosídeos/uso terapêutico , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Alvéolos Pulmonares/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
5.
Phytomedicine ; 61: 152843, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31039533

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) ranks third among the most common causes of cancer-related deaths worldwide. The chemotherapy for HCC is still insufficient, so far. In searching for effective anti-HCC agents from traditional Chinese medicine, we discovered that aloperine (ALO), a quinolizidine alkaloid from Sophora alopecuroides L., exerts anti-HCC activities. However, the effects of ALO on HCC have been rarely studied, and its underlying mechanisms remain unknown. PURPOSE: This study aims to evaluate the anti-HCC activities of ALO and explore its underlying mechanisms. METHODS: MTT assay and colony formation assay were used to investigate the anti-proliferative effects of ALO on human HCC Hep3B and Huh7 cells. Hoechst 33258 staining was used to observe the morphological changes of cells after ALO treatment. Flow cytometry was used to analyze apoptosis induction, the collapse of the mitochondrial membrane potential and cell cycle distribution. Western blotting was used to examine the expression levels of proteins associated with apoptosis and cell cycle arrest, and key proteins in the PI3K/Akt signaling pathway. Small interfering RNA (siRNA) transfection was used to investigate the role of Akt in ALO-induced apoptosis and cell cycle arrest. Zebrafish tumor model was used to evaluate the anti-HCC effects of ALO in vivo. RESULTS: ALO inhibited the proliferation of Hep3B and Huh7 cells. ALO induced apoptosis in HCC cells, which was accompanied by the loss of mitochondrial potential, the release of cytochrome c into cytosol, as well as the increased cleavages of caspase-9, caspase-3 and PARP. Moreover, ALO induced G2/M cell cycle arrest by downregulating the expression levels of cdc25C, cdc2 and cyclin B1. In addition, ALO inhibited activation of the PI3K/Akt signaling pathway by decreasing the expression levels of p110α, p85, Akt and p-Akt (Ser473). Further study showed that inhibition of Akt by siRNA augmented ALO-mediated apoptosis and G2/M cell cycle arrest in HCC cells. Critically, ALO inhibited the growth of Huh7 cells in vivo. CONCLUSION: We first demonstrated that ALO induced apoptosis and G2/M cell cycle arrest in HCC cells through inhibition of the PI3K/Akt signaling pathway. This study provides a rationale for ALO as a potential chemotherapeutic agent for HCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Piperidinas/farmacologia , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Embrião não Mamífero , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizidinas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(9): 1211-1216, 2017 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-28951364

RESUMO

OBJECTIVE: To investigate the inhibitory effect of giganteaside D (GD) on hepatocellular carcinoma and its molecular mechanisms. METHODS: The inhibitory effects of GD on Hep 3b cells were determined using MTT assay and colony formation assay. The morphological changes of Hep 3b cells after GD treatment were observed by electron microscopy, and the cell cycle changes was analyzed using flow cytometry. The cell apoptosis and mitochondrial potential collapse in the treated cells were tested with Hoechst staining assay and flow cytometry. The expression levels of Bcl-2, PARP and key proteins in MAPK pathway were detected using Western blotting. RESULTS: GD showed a significant inhibitory effect on Hep 3b cells with an IC50 value of 16.08 µmol/L at 72 h. Flow cytometric analysis demonstrated that the phases of cell cycle remained unchanged and a sub-G1 peak (from 3.3% to 33.6%) appeared as GD concentration increased. GD-induced apoptosis was further conformed by Hoechst staining assay, and flow cytometry showed increased mitochondrial potential collapse in the cells. Western blotting demonstrated the cleavage of PARP, decrease of Bcl-2 and p-Erk1/2 (Thr202/Tyr204), and activation of p-p38 (Thr180/Tyr182) and p-JNK (Thr183/Tyr185) in GD-treated cells. CONCLUSIONS: GD has significant inhibitory effect against hepatocellular carcinoma cells in vitro by inducing apoptosis possibly in association with the MAPK signaling pathway.

7.
Oncotarget ; 7(16): 21222-34, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27034013

RESUMO

Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Colinérgicos/farmacologia , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Medicina Tradicional Chinesa , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Inflamação/induzido quimicamente , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA