Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1270101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753371

RESUMO

Based on the development of nucleic acid therapeutic drugs, DNAzymes obtained through in vitro selection technology in 1994 are gradually being sought. DNAzymes are single-stranded DNA molecules with catalytic function, which specifically cleave RNA under the action of metal ions. Various in vivo and in vitro models have recently demonstrated that DNAzymes can target related genes in cancer, cardiovascular disease, bacterial and viral infection, and central nervous system disease. Compared with other nucleic acid therapy drugs, DNAzymes have gained more attention due to their excellent cutting efficiency, high stability, and low cost. Here, We first briefly reviewed the development and characteristics of DNAzymes, then discussed disease-targeting inhibition model of DNAzymes, hoping to provide new insights and ways for disease treatment. Finally, DNAzymes were still subject to some restrictions in practical applications, including low cell uptake efficiency, nuclease degradation and interference from other biological matrices. We discussed the latest delivery strategy of DNAzymes, among which lipid nanoparticles have recently received widespread attention due to the successful delivery of the COVID-19 mRNA vaccine, which provides the possibility for the subsequent clinical application of DNAzymes. In addition, the future development of DNAzymes was prospected.

2.
Exp Ther Med ; 23(1): 11, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34815763

RESUMO

Pulmonary emphysema is one of the most important pathological manifestations of chronic obstructive pulmonary disease and is commonly associated with cigarette smoking. Previous studies have indicated that necroptosis, a novel non-apoptotic cell death mechanism associated with inflammation and oxidative stress, may contribute to the development of pulmonary emphysema. Theaflavin-3,3'-digallate (TF-3), one of the theaflavins present in black tea, is known to possess several bioactive properties. In the present study, it was demonstrated that TF-3 significantly reduced the generation of reactive oxygen species and the mRNA expression levels of TNF-α, IL-1ß and IL-6 in CSE-treated human normal lung epithelial BEAS-2B cells. To further explore the role of TF-3 in necroptosis, the necroptotic rates of BEAS-2B cells were examined via flow cytometry and immunofluorescence assays. The results demonstrated that TF-3 may suppress necroptosis in CSE-treated BEAS-2B cells. Furthermore, it was determined that TF-3 significantly inhibited the CSE-induced phosphorylation of p38 MAPK, receptor-interacting serine/threonine-protein kinase three (RIPK3) and mixed lineage kinase domain-like (MLKL) in BEAS-2B cells. Another experiment demonstrated that a pharmacological inhibitor of the p38 MAPK pathway, SB203580, significantly reduced the protein expression levels of phosphorylated (p)-RIPK3 and phosphorylated (p-)MLKL, which indicated that TF-3 suppressed necroptosis via the p38 MAPK/RIPK3/MLKL signaling pathways. In vivo, it was observed that TF-3 treatment significantly attenuated morphological lung injury in mice with CSE-induced emphysema. Moreover, TF-3 significantly reduced the levels of proinflammatory cytokines, TNF-α and IL-1ß and significantly enhanced the antioxidant capacity of the lung tissues in mice with emphysema. TF-3 also significantly inhibited the levels of p-RIPK3 and p-MLKL in the lungs of mice with emphysema. Therefore, the present study indicated that TF-3 may attenuate CSE-induced emphysema in mice by inhibiting necroptosis.

3.
Front Immunol ; 12: 692286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305926

RESUMO

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by diffuse inflammation of the lung parenchyma and refractory hypoxemia. Butorphanol is commonly used clinically for perioperative pain relief, but whether butorphanol can regulate LPS-induced alveolar macrophage polarization is unclear. In this study, we observed that butorphanol markedly attenuated sepsis-induced lung tissue injury and mortality in mice. Moreover, butorphanol also decreased the expression of M1 phenotype markers (TNF-α, IL-6, IL-1ß and iNOS) and enhanced the expression of M2 marker (CD206) in alveolar macrophages in the bronchoalveolar lavage fluid (BALF) of LPS-stimulated mice. Butorphanol administration reduced LPS-induced numbers of proinflammatory (M1) macrophages and increased numbers of anti-inflammatory (M2) macrophages in the lungs of mice. Furthermore, we found that butorphanol-mediated suppression of the LPS-induced increases in M1 phenotype marker expression (TNF-α, IL-6, IL-1ß and iNOS) in bone marrow-derived macrophages (BMDMs), and this effect was reversed by κ-opioid receptor (KOR) antagonists. Moreover, butorphanol inhibited the interaction of TLR4 with MyD88 and further suppressed NF-κB and MAPKs activation. In addition, butorphanol prevented the Toll/IL-1 receptor domain-containing adaptor inducing IFN-ß (TRIF)-mediated IFN signaling pathway. These effects were ameliorated by KOR antagonists. Thus, butorphanol may promote macrophage polarization from a proinflammatory to an anti-inflammatory phenotype secondary to the inhibition of NF-κB, MAPKs, and the TRIF-mediated IFN signaling pathway through κ receptors.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Analgésicos Opioides/farmacologia , Anti-Inflamatórios/farmacologia , Butorfanol/farmacologia , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Pneumonia/prevenção & controle , Receptores Opioides kappa/antagonistas & inibidores , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fenótipo , Pneumonia/imunologia , Pneumonia/metabolismo , Receptores Opioides kappa/metabolismo , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 525(3): 733-739, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32143825

RESUMO

Cigarette smoke is one of major risk factors in the pathogenesis of chronic obstructive pulmonary disease (COPD). It is generally believed that cigarette smoke induces mitochondrial damage in the alveolar epithelial cells to contribute to COPD. However, the exact molecular mechanism remains unknown for the mitochondrial damage. In this study, cigarette smoke extract (CSE) was found to induce the mitochondrial membrane permeability (MMP), which promoted proton leakage leading to the reduction in mitochondrial potential and ATP production. ANT in the mitochondrial inner membrane was activated by CSE for the alteration of MMP. The activation was observed without an alteration in the protein level of ANT. Inhibition of the ANT activity with ADP or bongkrekic acid prevented the MMP alteration and potential drop upon CSE exposure. The ANT activation was observed with a rise in ROS production, inhibition of the mitochondrial respiration, decrease in the complex III protein and rise in mitophagy activity. The results suggest that ANT may mediate the toxic effect of cigarette smoke on mitochondria and control of ANT activity is a potential strategy in intervention of the toxicity.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Fumar Cigarros/efeitos adversos , Células Epiteliais/metabolismo , Pulmão/patologia , Membranas Mitocondriais/metabolismo , Células A549 , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia , Modelos Biológicos , Permeabilidade , Doença Pulmonar Obstrutiva Crônica/patologia
6.
PLoS One ; 9(7): e101539, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25004108

RESUMO

Germ cell and embryonic stem cells are inextricably linked in many aspects. Remarkably both can generate all somatic cell types in organisms. Yet the molecular regulation accounting for these similarities is not fully understood. Cyclin K was previously thought to associate with CDK9 to regulate gene expression. However, we and others have recently shown that its cognate interacting partners are CDK12 and CDK13 in mammalian cells. We further demonstrated that cyclin K is essential for embryonic stem cell maintenance. In this study, we examined the expression of cyclin K in various murine and human tissues. We found that cyclin K is highly expressed in mammalian testes in a developmentally regulated manner. During neonatal spermatogenesis, cyclin K is highly expressed in gonocytes and spermatogonial stem cells. In adult testes, cyclin K can be detected in spermatogonial stem cells but is absent in differentiating spermatogonia, spermatids and spermatozoa. Interestingly, the strongest expression of cyclin K is detected in primary spermatocytes. In addition, we found that cyclin K is highly expressed in human testicular cancers. Knockdown of cyclin K in a testicular cancer cell line markedly reduces cell proliferation. Collectively, we suggest that cyclin K may be a novel molecular link between germ cell development, cancer development and embryonic stem cell maintenance.


Assuntos
Ciclinas/genética , Regulação da Expressão Gênica no Desenvolvimento , Espermatogênese/genética , Testículo/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Ciclinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Células Germinativas/metabolismo , Humanos , Masculino , Mamíferos/genética , Camundongos , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA