Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Res ; 33(1): 71-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36588121

RESUMO

Pollen tube tip growth requires intricate Ca2+ signaling. Recent studies have also identified rapid alkalization factor (RALF)-family peptides and their receptors as critical components for pollen tube tip growth and integrity. The functional relationship of RALF and calcium signaling modules remains largely unclear. Here we report that disruption of RALF signaling pathway abolished the cytosolic Ca2+ gradient in the pollen tube, indicating that Ca2+ signaling is downstream of the RALF signaling pathway. We identified MILDEW RESISTANCE LOCUS O (MLO) family proteins MLO1, 5, 9, 15, as Ca2+ channels required for Ca2+ influx and pollen tube integrity. We further reconstituted the biochemical pathway in which signaling via RALF and RALF receptors activated MLO1/5/9/15 calcium channels. Together, we conclude that RALF peptides derived from pollen tube bind to their receptors to establish pollen tube Ca2+ gradient through activation of the MLO channels. Our finding has thus provided a mechanistic link between the RALF signaling pathway and Ca2+ signaling in controlling pollen tube integrity and growth.


Assuntos
Canais de Cálcio , Tubo Polínico , Tubo Polínico/metabolismo , Canais de Cálcio/metabolismo , Proteínas/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos/metabolismo , Transdução de Sinais , Cálcio/metabolismo , Sinalização do Cálcio
2.
Mol Plant ; 15(10): 1590-1601, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36097639

RESUMO

Excess phosphate (Pi) is stored into the vacuole through Pi transporters so that cytoplasmic Pi levels remain stable in plant cells. We hypothesized that the vacuolar Pi transporters may harbor a Pi-sensing mechanism so that they are activated to deliver Pi into the vacuole only when cytosolic Pi reaches a threshold high level. We tested this hypothesis using Vacuolar Phosphate Transporter 1 (VPT1), a SPX domain-containing vacuolar Pi transporter, as a model. Recent studies have defined SPX as a Pi-sensing module that binds inositol polyphosphate signaling molecules (InsPs) produced at high cellular Pi status. We showed here that Pi-deficient conditions or mutation of the SPX domain severely impaired the transport activity of VPT1. We further identified an auto-inhibitory domain in VPT1 that suppresses its transport activity. Taking together the results from detailed structure-function analyses, our study suggests that VPT1 is in the auto-inhibitory state when Pi status is low, whereas at high cellular Pi status InsPs are produced and bind SPX domain to switch on VPT1 activity to deliver Pi into the vacuole. This thus provides an auto-regulatory mechanism for VPT1-mediated Pi sensing and homeostasis in plant cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostase , Inositol , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Polifosfatos/metabolismo , Vacúolos/metabolismo
3.
Nature ; 607(7919): 534-539, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794475

RESUMO

Precise signalling between pollen tubes and synergid cells in the ovule initiates fertilization in flowering plants1. Contact of the pollen tube with the ovule triggers calcium spiking in the synergids2,3 that induces pollen tube rupture and sperm release. This process, termed pollen tube reception, entails the action of three synergid-expressed proteins in Arabidopsis: FERONIA (FER), a receptor-like kinase; LORELEI (LRE), a glycosylphosphatidylinositol-anchored protein; and NORTIA (NTA), a transmembrane protein of unknown function4-6. Genetic analyses have placed these three proteins in the same pathway; however, it remains unknown how they work together to enable synergid-pollen tube communication. Here we identify two pollen-tube-derived small peptides7 that belong to the rapid alkalinization factor (RALF) family8 as ligands for the FER-LRE co-receptor, which in turn recruits NTA to the plasma membrane. NTA functions as a calmodulin-gated calcium channel required for calcium spiking in the synergid. We also reconstitute the biochemical pathway in which FER-LRE perceives pollen-tube-derived peptides to activate the NTA calcium channel and initiate calcium spiking, a second messenger for pollen tube reception. The FER-LRE-NTA trio therefore forms a previously unanticipated receptor-channel complex in the female cell to recognize male signals and trigger the fertilization process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sinalização do Cálcio , Cálcio , Proteínas de Ligação a Calmodulina , Glicoproteínas de Membrana , Fosfotransferases , Tubo Polínico , Pólen , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Membrana Celular/metabolismo , Fertilização , Glicoproteínas de Membrana/metabolismo , Óvulo Vegetal/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo
4.
Huan Jing Ke Xue ; 43(3): 1307-1314, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258194

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) play a key role in the formation of secondary organic areole and ozone. This study sampled three commercial Chinese restaurants and a food plant in Shenzhen to analyze the emission characteristics of PAHs, especially the alkyl PAHs in both gas and particle phases. The results showed that the ρ(total PAHs)in the particle and gas phase were (1381.6±140.5) ng·m-3, (1030.2±116.4) ng·m-3, (908.3±111.9) ng·m-3, and (838.0±93.5) ng·m-3 in the food plant, Sichuan, Cantonese, and Zhejiang restaurants, respectively. More than 60% of the PAHs were distributed in the gas phase, especially the lower molecular weight PAHs (lower than Chrysene). The gas phase proportion of naphthalene was the highest, with over 75% of it distributed in the gas phase. However, the PAHs with a higher molecular weight than that of benzo(b)fluorescence were mainly distributed in the particle phase. The total concentration of alkyl PAHs emitted from cooking was much lower than that of the corresponding parent PAHs, and the distribution characteristics of alkyl PAHs were quite different from those of other emission sources. The linear fitting of lgKp and lgPL showed that the slopes of the three commercial restaurants ranged from -0.25 to -0.28, whereas for the food plant, the value was -0.18, which indicates that the gas-particle partitioning of PAHs were not in equilibrium.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Culinária , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise
5.
Curr Genomics ; 22(3): 164-180, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34975289

RESUMO

Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).

6.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171866

RESUMO

Phosphate transporters (PHTs) play pivotal roles in phosphate (Pi) acquisition from the soil and distribution throughout a plant. However, there is no comprehensive genomic analysis of the PHT families in Camelina sativa, an emerging oilseed crop. In this study, we identified 73 CsPHT members belonging to the five major PHT families. A whole-genome triplication event was the major driving force for CsPHT expansion, with three homoeologs for each Arabidopsis ortholog. In addition, tandem gene duplications on chromosome 11, 18 and 20 further enlarged the CsPHT1 family beyond the ploidy norm. Phylogenetic analysis showed clustering of the CsPHT1 and CsPHT4 family members into four distinct groups, while CsPHT3s and CsPHT5s were clustered into two distinct groups. Promoter analysis revealed widespread cis-elements for low-P response (P1BS) specifically in CsPHT1s, consistent with their function in Pi acquisition and translocation. In silico RNA-seq analysis revealed more ubiquitous expression of several CsPHT1 genes in various tissues, whereas CsPHT2s and CsPHT4s displayed preferential expression in leaves. While several CsPHT3s were expressed in germinating seeds, most CsPHT5s were expressed in floral and seed organs. Suneson, a popular Camelina variety, displayed better tolerance to low-P than another variety, CS-CROO, which could be attributed to the higher expression of several CsPHT1/3/4/5 family genes in shoots and roots. This study represents the first effort in characterizing CsPHT transporters in Camelina, a promising polyploid oilseed crop that is highly tolerant to abiotic stress and low-nutrient status, and may populate marginal soils for biofuel production.


Assuntos
Camellia/genética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Camellia/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poliploidia , Sementes/metabolismo , Estresse Fisiológico/genética
7.
Mol Plant ; 13(10): 1434-1454, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32896643

RESUMO

The molecular mechanism by which plants defend against plant root-knot nematodes (RKNs) is largely unknown. The plant receptor kinase FERONIA and its peptide ligands, rapid alkalinization factors (RALFs), regulate plant immune responses and cell expansion, which are two important factors for successful RKN parasitism. In this study, we found that mutation of FERONIA in Arabidopsis thaliana resulted in plants showing low susceptibility to the RKN Meloidogyne incognita. To identify the underlying mechanisms associated with this phenomenon, we identified 18 novel RALF-likes from multiple species of RKNs and showed that two RALF-likes (i.e., MiRALF1 and MiRALF3) from M. incognita were expressed in the esophageal gland with high expression during the parasitic stages of nematode development. These nematode RALF-likes also possess the typical activities of plant RALFs and can directly bind to the extracellular domain of FERONIA to modulate specific steps of nematode parasitism-related immune responses and cell expansion. Genetically, both MiRALF1/3 and FERONIA are required for RKN parasitism in Arabidopsis and rice. Collectively, our study suggests that nematode-encoded RALFs facilitate parasitism via plant-encoded FERONIA and provides a novel paradigm for studying host-pathogen interactions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosfotransferases/metabolismo , Doenças das Plantas/parasitologia , Arabidopsis/enzimologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Fosfotransferases/genética
8.
Sci Signal ; 13(640)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665412

RESUMO

Plants defend against herbivores and nematodes by rapidly sending signals from the wounded sites to the whole plant. We investigated how plants generate and transduce these rapidly moving, long-distance signals referred to as systemic wound signals. We developed a system for measuring systemic responses to root wounding in Arabidopsis thaliana We found that root wounding or the application of glutamate to wounded roots was sufficient to trigger root-to-shoot Ca2+ waves and slow wave potentials (SWPs). Both of these systemic signals were inhibited by either disruption of both GLR3.3 and GLR3.6, which encode glutamate receptor-like proteins (GLRs), or constitutive activation of the P-type H+-ATPase AHA1. We further showed that GLR3.3 and GLR3.6 displayed Ca2+-permeable channel activities gated by both glutamate and extracellular pH. Together, these results support the hypothesis that wounding inhibits P-type H+-ATPase activity, leading to apoplastic alkalization. This, together with glutamate released from damaged phloem, activates GLRs, resulting in depolarization of membranes in the form of SWPs and the generation of cytosolic Ca2+ increases to propagate systemic wound signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Receptores de Glutamato/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Canais de Cálcio/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Receptores de Glutamato/genética
9.
Nat Plants ; 6(4): 384-393, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231253

RESUMO

Potassium (K) is an essential nutrient, but levels of the free K ions (K+) in soil are often limiting, imposing a constant stress on plants. We have discovered a calcium (Ca2+)-dependent signalling network, consisting of two calcineurin B-like (CBL) Ca2+ sensors and a quartet of CBL-interacting protein kinases (CIPKs), which plays a key role in plant response to K+ starvation. The mutant plants lacking two CBLs (CBL2 and CBL3) were severely stunted under low-K conditions. Interestingly, the cbl2 cbl3 mutant was normal in K+ uptake but impaired in K+ remobilization from vacuoles. Four CIPKs-CIPK3, 9, 23 and 26-were identified as partners of CBL2 and CBL3 that together regulate K+ homeostasis through activating vacuolar K+ efflux to the cytoplasm. The vacuolar two-pore K+ (TPK) channels were directly activated by the vacuolar CBL-CIPK modules in a Ca2+-dependent manner, presenting a mechanism for the activation of vacuolar K+ remobilization that plays an important role in plant adaptation to K+ deficiency.


Assuntos
Arabidopsis/metabolismo , Sinalização do Cálcio , Potássio/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Homeostase , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Nicotiana/genética , Vacúolos/metabolismo
10.
New Phytol ; 225(4): 1606-1617, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31569267

RESUMO

Two types of tonoplast proton pumps, H+ -pyrophosphatase (V-PPase) and the H+ -ATPase (V-ATPase), establish the proton gradient that powers molecular traffic across the tonoplast thereby facilitating turgor regulation and nutrient homeostasis. However, how proton pumps regulate development remains unclear. In this study, we investigated the function of two types of proton pumps in Arabidopsis embryo development and pattern formation. While disruption of either V-PPase or V-ATPase had no obvious effect on plant embryo development, knocking out both resulted in severe defects in embryo pattern formation from the early stage. While the first division in wild-type zygote was asymmetrical, a nearly symmetrical division occurred in the mutant, followed by abnormal pattern formation at all stages of embryo development. The embryonic defects were accompanied by dramatic differences in vacuole morphology and distribution, as well as disturbed localisation of PIN1. The development of mutant cotyledons and root, and the auxin response of mutant seedlings supported the hypothesis that mutants lacking tonoplast proton pumps were defective in auxin transport and distribution. Taking together, we proposed that two tonoplast proton pumps are required for vacuole morphology and PIN1 localisation, thereby controlling vacuole and auxin-related developmental processes in Arabidopsis embryos and seedlings.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Desenvolvimento Embrionário/fisiologia , Pirofosfatase Inorgânica/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Gravitropismo/fisiologia , Pirofosfatase Inorgânica/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Naftóis/farmacologia , Ftalimidas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Transporte Proteico
11.
Plant Physiol ; 181(2): 743-761, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31350362

RESUMO

Plants cope with aluminum (Al) toxicity by secreting organic acids (OAs) into the apoplastic space, which is driven by proton (H+) pumps. Here, we show that mutation of vacuolar H+-translocating adenosine triphosphatase (H+-ATPase) subunit a2 (VHA-a2) and VHA-a3 of the vacuolar H+-ATPase enhances Al resistance in Arabidopsis (Arabidopsis thaliana). vha-a2 vha-a3 mutant plants displayed less Al sensitivity with less Al accumulation in roots compared to wild-type plants when grown under excessive Al3+ Interestingly, in response to Al3+ exposure, plants showed decreased vacuolar H+ pump activity and reduced expression of VHA-a2 and VHA-a3, which were accompanied by increased plasma membrane H+ pump (PM H+-ATPase) activity. Genetic analysis of plants with altered PM H+-ATPase activity established a correlation between Al-induced increase in PM H+-ATPase activity and enhanced Al resistance in vha-a2 vha-a3 plants. We determined that external OAs, such as malate and citrate whose secretion is driven by PM H+-ATPase, increased with PM H+-ATPase activity upon Al stress. On the other hand, elevated secretion of malate and citrate in vha-a2 vha-a3 root exudates appeared to be independent of OAs metabolism and tolerance of phosphate starvation but was likely related to impaired vacuolar sequestration. These results suggest that coordination of vacuolar H+-ATPase and PM H+-ATPase dictates the distribution of OAs into either the vacuolar lumen or the apoplastic space that, in turn, determines Al tolerance capacity in plants.


Assuntos
Alumínio/toxicidade , Arabidopsis/metabolismo , Ácidos Carboxílicos/metabolismo , Raízes de Plantas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alumínio/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pirofosfatase Inorgânica/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/genética
12.
PLoS Biol ; 16(10): e2006340, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30339663

RESUMO

FERONIA (FER), a plasma membrane receptor-like kinase, is a central regulator of cell growth that integrates environmental and endogenous signals. A peptide ligand rapid alkalinization factor 1 (RALF1) binds to FER and triggers a series of downstream events, including inhibition of Arabidopsis H+-ATPase 2 activity at the cell surface and regulation of gene expression in the nucleus. We report here that, upon RALF1 binding, FER first promotes ErbB3-binding protein 1 (EBP1) mRNA translation and then interacts with and phosphorylates the EBP1 protein, leading to EBP1 accumulation in the nucleus. There, EBP1 associates with the promoters of previously identified RALF1-regulated genes, such as CML38, and regulates gene transcription in response to RALF1 signaling. EBP1 appears to inhibit the RALF1 peptide response, thus forming a transcription-translation feedback loop (TTFL) similar to that found in circadian rhythm control. The plant RALF1-FER-EBP1 axis is reminiscent of animal epidermal growth factor receptor (EGFR) signaling, in which EGF peptide induces EGFR to interact with and phosphorylate EBP1, promoting EBP1 nuclear accumulation to control cell growth. Thus, we suggest that in response to peptide signals, plant FER and animal EGFR use the conserved key regulator EBP1 to control cell growth in the nucleus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Animais , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Retroalimentação Fisiológica , Genes de Plantas , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Hormônios Peptídicos/genética , Fosforilação , Fosfotransferases/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
13.
Fish Shellfish Immunol ; 83: 341-347, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30219386

RESUMO

Raf is a member in the Ras/Raf/MAPKK/MAPK signaling transduction pathway. To obtain a better understanding of Raf in the interaction between the Chinese shrimp Fenneropenaeus chinensis and white spot syndrome virus (WSSV), the sequence of cDNA of Raf from F. chinensis (FcRaf) was obtained. The FcRaf gene contained a 2421 bp open reading frame (ORF). The FcRaf shared most characteristic of Raf protein, such as the Raf-like Ras-binding domain (RBD), phorbol esters/diacylglycerol binding domain (C1 domain), and catalytic domain of the serine/threonine kinases, Raf (STKc_Raf). The sequence of functional domains of Raf protein was relatively conserved. The FcRaf mRNA was detected in the tissues of gill, muscle, and hepatopancreas from normal F. chinensis. The mRNA abundance level of FcRaf in the gill was the highest, which was 2.7-fold the level in the hepatopancreas. The expression level of FcRaf was significantly (P < 0.05) up-regulated in the tissues of gill, muscle, and hepatopancreas post WSSV-infection, which suggested that FcRaf might be involved in the interaction between F. chinensis and WSSV. Two SNP loci were identified in the ORF, one of which was a C-T mis-sense mutation, where an Ala was replaced by a Val, and induced the predicted protein secondary structure change. Considering the relatively low MAF (0.07), whether this mis-sense mutation was a detrimental mutation needs further investigation.


Assuntos
Proteínas de Artrópodes/genética , Penaeidae/genética , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1 , Quinases raf/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Músculos/metabolismo
14.
Plant Cell ; 30(5): 1132-1146, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29716993

RESUMO

The plant elicitor peptides (Peps), a family of damage/danger-associated molecular patterns (DAMPs), are perceived by two receptors, PEPR1 and PEPR2, and contribute to plant defense against pathogen attack and abiotic stress. Here, we show that the Peps-PEPR signaling pathway functions in stomatal immunity by activating guard cell anion channels in Arabidopsis thaliana The mutant plants lacking both PEPR1 and PEPR2 (pepr1 pepr2) displayed enhanced bacterial growth after being sprayed with Pseudomonas syringae pv tomato (Pst) DC3000, but not after pathogen infiltration into leaves, implicating PEPR function in stomatal immunity. Indeed, synthetic Arabidopsis Peps (AtPeps) effectively induced stomatal closure in wild-type but not pepr1 pepr2 mutant leaves, suggesting that the AtPeps-PEPR signaling pathway triggers stomatal closure. Consistent with this finding, patch-clamp recording revealed AtPep1-induced activation of anion channels in the guard cells of wild-type but not pepr1 pepr2 mutant plants. We further identified two guard cell-expressed anion channels, SLOW ANION CHANNEL1 (SLAC1) and its homolog SLAH3, as functionally overlapping components responsible for AtPep1-induced stomatal closure. The slac1 slah3 double mutant, but not slac1 or slah3 single mutants, failed to respond to AtPep1 in stomatal closure assays. Interestingly, disruption of OPEN STOMATA1 (OST1), an essential gene for abscisic acid-triggered stomatal closure, did not affect the AtPep1-induced anion channel activity and stomatal response. Together, these results illustrate a DAMP-triggered signaling pathway that, unlike the flagellin22-FLAGELLIN-SENSITIVE2 pathway, triggers stomata immunity through an OST1-independent mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo
15.
Proc Natl Acad Sci U S A ; 114(10): E2036-E2045, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28202726

RESUMO

The central vacuole in a plant cell occupies the majority of the cellular volume and plays a key role in turgor regulation. The vacuolar membrane (tonoplast) contains a large number of transporters that mediate fluxes of solutes and water, thereby adjusting cell turgor in response to developmental and environmental signals. We report that two tonoplast Detoxification efflux carrier (DTX)/Multidrug and Toxic Compound Extrusion (MATE) transporters, DTX33 and DTX35, function as chloride channels essential for turgor regulation in Arabidopsis Ectopic expression of each transporter in Nicotiana benthamiana mesophyll cells elicited a large voltage-dependent inward chloride current across the tonoplast, showing that DTX33 and DTX35 each constitute a functional channel. Both channels are highly expressed in Arabidopsis tissues, including root hairs and guard cells that experience rapid turgor changes during root-hair elongation and stomatal movements. Disruption of these two genes, either in single or double mutants, resulted in shorter root hairs and smaller stomatal aperture, with double mutants showing more severe defects, suggesting that these two channels function additively to facilitate anion influx into the vacuole during cell expansion. In addition, dtx35 single mutant showed lower fertility as a result of a defect in pollen-tube growth. Indeed, patch-clamp recording of isolated vacuoles indicated that the inward chloride channel activity across the tonoplast was impaired in the double mutant. Because MATE proteins are widely known transporters of organic compounds, finding MATE members as chloride channels expands the functional definition of this large family of transporters.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Canais de Cloreto/genética , Regulação da Expressão Gênica de Plantas , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/genética , Raízes de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Canais de Cloreto/metabolismo , Membranas Intracelulares/ultraestrutura , Potenciais da Membrana/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Pressão Osmótica , Técnicas de Patch-Clamp , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Raízes de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
16.
New Phytol ; 214(2): 830-841, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28150888

RESUMO

Despite the physiological importance of aluminum (Al) phytotoxicity for plants, it remained unknown if, and how, calcineurin B-like calcium sensors (CBLs) and CBL-interacting protein kinases (CIPKs) are involved in Al resistance. We performed a comparative physiological and whole transcriptome investigation of an Arabidopsis CBL1 mutant (cbl1) and the wild-type (WT). cbl1 plants exudated less Al-chelating malate, accumulated more Al, and displayed a severe root growth reduction in response to Al. Genes involved in metabolism, transport, cell wall modification, transcription and oxidative stress were differentially regulated between the two lines, under both control and Al stress treatments. Exposure to Al resulted in up-regulation of a large set of genes only in WT and not cbl1 shoots, while a different set of genes were down-regulated in cbl1 but not in WT roots. These differences allowed us, for the first time, to define a calcium-regulated/dependent transcriptomic network for Al stress responses. Our analyses reveal not only the fundamental role of CBL1 in the adjustment of central transcriptomic networks involved in maintaining adequate physiological homeostasis processes, but also that a high shoot-root dynamics is required for the proper deployment of Al resistance responses in the root.


Assuntos
Alumínio/toxicidade , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Mutação com Perda de Função/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Malatos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
17.
Proc Natl Acad Sci U S A ; 113(51): E8326-E8334, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930296

RESUMO

A number of hormones work together to control plant cell growth. Rapid Alkalinization Factor 1 (RALF1), a plant-derived small regulatory peptide, inhibits cell elongation through suppression of rhizosphere acidification in plants. Although a receptor-like kinase, FERONIA (FER), has been shown to act as a receptor for RALF1, the signaling mechanism remains unknown. In this study, we identified a receptor-like cytoplasmic kinase (RPM1-induced protein kinase, RIPK), a plasma membrane-associated member of the RLCK-VII subfamily, that is recruited to the receptor complex through interacting with FER in response to RALF1. RALF1 triggers the phosphorylation of both FER and RIPK in a mutually dependent manner. Genetic analysis of the fer-4 and ripk mutants reveals RIPK, as well as FER, to be required for RALF1 response in roots. The RALF1-FER-RIPK interactions may thus represent a mechanism for peptide signaling in plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Hormônios Peptídicos/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/fisiologia , Arabidopsis/genética , Citoplasma/metabolismo , Ligantes , Microscopia Confocal , Mutação , Fenótipo , Fosforilação , Fosfotransferases/fisiologia , Fotoperíodo , Filogenia , Reguladores de Crescimento de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Domínios Proteicos , Sementes/metabolismo , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 113(37): E5519-27, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27566404

RESUMO

Receptor-like kinase FERONIA (FER) plays a crucial role in plant response to small molecule hormones [e.g., auxin and abscisic acid (ABA)] and peptide signals [e.g., rapid alkalinization factor (RALF)]. It remains unknown how FER integrates these different signaling events in the control of cell growth and stress responses. Under stress conditions, increased levels of ABA will inhibit cell elongation in the roots. In our previous work, we have shown that FER, through activation of the guanine nucleotide exchange factor 1 (GEF1)/4/10-Rho of Plant 11 (ROP11) pathway, enhances the activity of the phosphatase ABA Insensitive 2 (ABI2), a negative regulator of ABA signaling, thereby inhibiting ABA response. In this study, we found that both RALF and ABA activated FER by increasing the phosphorylation level of FER. The FER loss-of-function mutant displayed strong hypersensitivity to both ABA and abiotic stresses such as salt and cold conditions, indicating that FER plays a key role in ABA and stress responses. We further showed that ABI2 directly interacted with and dephosphorylated FER, leading to inhibition of FER activity. Several other ABI2-like phosphatases also function in this pathway, and ABA-dependent FER activation required PYRABACTIN RESISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)-A-type protein phosphatase type 2C (PP2CA) modules. Furthermore, suppression of RALF1 gene expression, similar to disruption of the FER gene, rendered plants hypersensitive to ABA. These results formulated a mechanism for ABA activation of FER and for cross-talk between ABA and peptide hormone RALF in the control of plant growth and responses to stress signals.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Hormônios Peptídicos/genética , Fosfotransferases/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Hormônios Peptídicos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Reguladores de Crescimento de Plantas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica , Transdução de Sinais/genética , Estresse Fisiológico/genética
19.
Cell Res ; 26(7): 755-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27297235

RESUMO

Root meristem growth factors (RGFs), a family of "orphan" peptides, control root growth by altering the expression and gradient of transcription factors PLETHORAS (PLTs) that maintain stem cell niche. However, the receptors for RGFs remain unknown until recently when three groups independently reported the identification of a group of receptor-like kinases (RLKs) as cell surface receptors for RGFs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema , Peptídeos , Raízes de Plantas
20.
Proc Natl Acad Sci U S A ; 112(47): E6571-8, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26554016

RESUMO

Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO4(2-), NO3(-), Cl(-), and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Vacúolos/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente , Proteínas de Fluorescência Verde/metabolismo , Homeostase/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Mutação , Fenótipo , Fosfatos/farmacologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/genética , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA