Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 41(6): 1152-1169.e7, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172580

RESUMO

Immune checkpoint inhibitor (ICI) therapy can induce complete responses in mismatch repair-deficient and microsatellite instability-high (d-MMR/MSI-H) colorectal cancers (CRCs). However, the underlying mechanism for pathological complete response (pCR) to immunotherapy has not been completely understood. We utilize single-cell RNA sequencing (scRNA-seq) to investigate the dynamics of immune and stromal cells in 19 patients with d-MMR/MSI-H CRC who received neoadjuvant PD-1 blockade. We found that in tumors with pCR, there is a concerted decrease in CD8+ Trm-mitotic, CD4+ Tregs, proinflammatory IL1B+ Mono and CCL2+ Fibroblast following treatment, while the proportions of CD8+ Tem, CD4+ Th, CD20+ B, and HLA-DRA+ Endothelial cells increase. Proinflammatory features in the tumor microenvironment mediate the persistence of residual tumors by modulating CD8+ T cells and other response-associated immune cell populations. Our study provides valuable resources and biological insights into the mechanism of successful ICI therapy and potential targets for improving treatment efficacy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos/patologia , Reparo de Erro de Pareamento de DNA , Células Endoteliais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Instabilidade de Microssatélites , Microambiente Tumoral
2.
Front Immunol ; 13: 915207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148222

RESUMO

The contour of the tumor immune microenvironment (TIME) is very important for tumor prognostic prediction but hard to be characterized in clinical practice. It is unclear practice whether the peripheral immune signature (pIS) reflects the TIME as a feasible prognostic indicator for head and neck squamous cell carcinoma (HNSCC) patients. Here, we enrolled 599 HNSCC patients from three domestic institutes to explore the relationship between the pIS and survival. The peripheral neutrophil-to-lymphocyte ratio (pNLR) was screened out as a significant prognostic variable through multivariable COX regression analyses. An inverse correlation between pNLR and survival was found in the data of these 599 patients. Meanwhile, the bulk tumor RNA-seq data of 913 cases were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to identify the prognosis-associated TIME features. The TIME feature was consistent to the finding of clinical data, in which high tissue NLR predicted a poor prognosis. Differentially expressed immune-related gene (DEIRG) enrichment analysis also showed a trend that the gene sets in patients with a good prognosis were enriched in lymphocyte-related functions, while those with a poor prognosis were enriched in neutrophil-related functions. At the same time, the well prediction performance of our model based on DEIRGs was verified in both TCGA and GEO cohorts. Finally, the correlation between pIS and the TIME was confirmed in a small independent cohort of 30 HNSCC patients. A positive correlation was confirmed prospectively between the pNLR and the TIME pattern in our independent cohort. Our findings provide evidence that the pNLR is a feasible prognostic signature that reflects the TIME patterns to some extent in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Microambiente Tumoral , Neoplasias de Cabeça e Pescoço/genética , Humanos , Linfócitos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral/genética
4.
Cancer Res ; 81(10): 2745-2759, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34003774

RESUMO

Porphyromonas gingivalis (P. gingivalis) is a keystone periodontal pathogen associated with various digestive cancers. However, whether P. gingivalis can promote colorectal cancer and the underlying mechanism associated with such promotion remains unclear. In this study, we found that P. gingivalis was enriched in human feces and tissue samples from patients with colorectal cancer compared with those from patients with colorectal adenoma or healthy subjects. Cohort studies demonstrated that P. gingivalis infection was associated with poor prognosis in colorectal cancer. P. gingivalis increased tumor counts and tumor volume in the ApcMin/+ mouse model and increased tumor growth in orthotopic rectal and subcutaneous carcinoma models. Furthermore, orthotopic tumors from mice exposed to P. gingivalis exhibited tumor-infiltrating myeloid cell recruitment and a proinflammatory signature. P. gingivalis promoted colorectal cancer via NLRP3 inflammasome activation in vitro and in vivo. NLRP3 chimeric mice harboring orthotopic tumors showed that the effect of NLRP3 on P. gingivalis pathogenesis was mediated by hematopoietic sources. Collectively, these data suggest that P. gingivalis contributes to colorectal cancer neoplasia progression by activating the hematopoietic NLRP3 inflammasome. SIGNIFICANCE: This study demonstrates that the periodontal pathogen P. gingivalis can promote colorectal tumorigenesis by recruiting myeloid cells and creating a proinflammatory tumor microenvironment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2745/F1.large.jpg.


Assuntos
Carcinogênese/patologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Células-Tronco Neoplásicas/patologia , Porphyromonas gingivalis/patogenicidade , Animais , Apoptose , Infecções por Bacteroidaceae/complicações , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Carcinogênese/imunologia , Carcinogênese/metabolismo , Proliferação de Células , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Humanos , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Células Mieloides/patologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/microbiologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Pharm ; 15(5): 1800-1813, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29668284

RESUMO

Hydroxychloroquine (HCQ) and human umbilical cord-derived mesenchymal stem cells (UC-MSCs) were used to treat systemic lupus erythematosus (SLE), respectively. However, the effect of HCQ on UC-MSCs in lupus nephritis (LN) has not been investigated. In this study, HCQ and UC-MSCs were used in MRL/lpr mice. Surprisingly, although the treatment of both HCQ and UC-MSCs could ameliorate renal damage separately, the presence of HCQ decreased unexpectedly the therapeutic effects of UC-MSCs through interfering expression of IFN-γ. However, HCQ-pretreated UC-MSCs showed significant improvements of renal morphology and function more rapidly than that of UC-MSCs and HCQ alone. To test the role of HCQ in UC-MSCs, MRL/lpr mice and SLE patients' peripheral blood were used in vivo and in vitro. Results showed that after administration of UC-MSCs pretreated by HCQ, CXCR3 expression in renal tissues, serum IL-2, and IgM levels decreased significantly, and serum IL-10 level increased significantly. HCQ pretreatment caused a significant decrease of TNF-α and MCP-1 secretion and an increase of IL-1ß and CXCL10 release from UC-MSCs. Our results indicate that HCQ plays a double-edged role in UC-MSCs. It is necessary for clinical treatment to pre-evaluated concomitant application of UC-MSCs with HCQ. More importantly, the alterative expression of IFN-γ, the improvement of migration ability of UC-MSCs, the regulation of Th1/Th2 balance, and the changes of antibodies secretion in B cell might be involved in its mechanisms.


Assuntos
Hidroxicloroquina/farmacologia , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/terapia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Cordão Umbilical/citologia , Cordão Umbilical/efeitos dos fármacos , Animais , Anticorpos/metabolismo , Linfócitos B/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Interferon gama/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr
7.
J Cell Physiol ; 233(2): 1434-1445, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28542832

RESUMO

Hibernation is a seasonally adaptive strategy that allows hibernators to live through extremely cold conditions. Despite the profound reduction of blood flow to the retinas, hibernation causes no lasting retinal injury. Instead, hibernators show an increased tolerance to ischemic insults during the hibernation period. To understand the molecular changes of the retinas in response to hibernation, we applied an integrative transcriptome and metabolome analysis to explore changes in gene expression and metabolites of 13-lined ground squirrel retinas during hibernation. Metabolomic analysis showed a global decrease of ATP synthesis in hibernating retinas. Decreased glucose and galactose, increased beta-oxidation of carnitine and decreased storage of some amino acids in hibernating retinas indicated a shift of fuel use from carbohydrates to lipids and alternative usage of amino acids. Transcriptomic analysis revealed that the down-regulated genes were enriched in DNA-templated transcription and immune-related functions, while the up-regulated genes were enriched in mitochondrial inner membrane and DNA packaging-related functions. We further showed that a subset of genes underwent active alternative splicing events in response to hibernation. Finally, integrative analysis of the transcriptome and metabolome confirmed the shift of fuel use in the hibernating retina by the regulation of catabolism of amino acids and lipids. Through transcriptomic and metabolomic data, our analysis revealed the altered state of mitochondrial oxidative phosphorylation and the shift of energy source in the hibernating retina, advancing our understanding of the molecular mechanisms employed by hibernators. The data will also serve as a useful resource for the ocular and hibernation research communities.


Assuntos
Metabolismo Energético , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica/métodos , Hibernação , Metabolômica/métodos , Retina/metabolismo , Sciuridae/genética , Sciuridae/metabolismo , Transcriptoma , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Processamento Alternativo , Aminoácidos/metabolismo , Animais , Cromatografia Líquida , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/imunologia , Sciuridae/imunologia , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
8.
Cell Rep ; 18(2): 468-481, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076790

RESUMO

Glioblastoma multiforme (GBM) is among the most aggressive of human cancers. Although differentiation therapy has been proposed as a potential approach to treat GBM, the mechanisms of induced differentiation remain poorly defined. Here, we established an induced differentiation model of GBM using cAMP activators that specifically directed GBM differentiation into astroglia. Transcriptomic and proteomic analyses revealed that oxidative phosphorylation and mitochondrial biogenesis are involved in induced differentiation of GBM. Dibutyryl cyclic AMP (dbcAMP) reverses the Warburg effect, as evidenced by increased oxygen consumption and reduced lactate production. Mitochondrial biogenesis induced by activation of the CREB-PGC1α pathway triggers metabolic shift and differentiation. Blocking mitochondrial biogenesis using mdivi1 or by silencing PGC1α abrogates differentiation; conversely, overexpression of PGC1α elicits differentiation. In GBM xenograft models and patient-derived GBM samples, cAMP activators also induce tumor growth inhibition and differentiation. Our data show that mitochondrial biogenesis and metabolic switch to oxidative phosphorylation drive the differentiation of tumor cells.


Assuntos
Astrócitos/patologia , Neoplasias Encefálicas/patologia , Diferenciação Celular , AMP Cíclico/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicólise , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/ultraestrutura , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Glioblastoma/genética , Glioblastoma/ultraestrutura , Glicólise/efeitos dos fármacos , Humanos , Biogênese de Organelas , Fosforilação Oxidativa/efeitos dos fármacos , Proteômica , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cell Proteomics ; 16(3): 469-484, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28087594

RESUMO

Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface.


Assuntos
Análise Serial de Proteínas/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Anotação de Sequência Molecular , Fosforilação , Mapas de Interação de Proteínas , Proteínas de Protozoários , Proteína Smad1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
10.
Genomics Proteomics Bioinformatics ; 14(6): 349-356, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27965104

RESUMO

Coronary artery disease (CAD) is a complex human disease, involving multiple genes and their nonlinear interactions, which often act in a modular fashion. Genome-wide single nucleotide polymorphism (SNP) profiling provides an effective technique to unravel these underlying genetic interplays or their functional involvements for CAD. This study aimed to identify the susceptible pathways and modules for CAD based on SNP omics. First, the Wellcome Trust Case Control Consortium (WTCCC) SNP datasets of CAD and control samples were used to assess the joint effect of multiple genetic variants at the pathway level, using logistic kernel machine regression model. Then, an expanded genetic network was constructed by integrating statistical gene-gene interactions involved in these susceptible pathways with their protein-protein interaction (PPI) knowledge. Finally, risk functional modules were identified by decomposition of the network. Of 276 KEGG pathways analyzed, 6 pathways were found to have a significant effect on CAD. Other than glycerolipid metabolism, glycosaminoglycan biosynthesis, and cardiac muscle contraction pathways, three pathways related to other diseases were also revealed, including Alzheimer's disease, non-alcoholic fatty liver disease, and Huntington's disease. A genetic epistatic network of 95 genes was further constructed using the abovementioned integrative approach. Of 10 functional modules derived from the network, 6 have been annotated to phospholipase C activity and cell adhesion molecule binding, which also have known functional involvement in Alzheimer's disease. These findings indicate an overlap of the underlying molecular mechanisms between CAD and Alzheimer's disease, thus providing new insights into the molecular basis for CAD and its molecular relationships with other diseases.


Assuntos
Doença da Artéria Coronariana/genética , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Bases de Dados Genéticas , Humanos , Desequilíbrio de Ligação , Modelos Logísticos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Polimorfismo de Nucleotídeo Único , Risco
11.
Genomics Proteomics Bioinformatics ; 12(1): 31-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24462714

RESUMO

Many cancers apparently showing similar phenotypes are actually distinct at the molecular level, leading to very different responses to the same treatment. It has been recently demonstrated that pathway-based approaches are robust and reliable for genetic analysis of cancers. Nevertheless, it remains unclear whether such function-based approaches are useful in deciphering molecular heterogeneities in cancers. Therefore, we aimed to test this possibility in the present study. First, we used a NCI60 dataset to validate the ability of pathways to correctly partition samples. Next, we applied the proposed method to identify the hidden subtypes in diffuse large B-cell lymphoma (DLBCL). Finally, the clinical significance of the identified subtypes was verified using survival analysis. For the NCI60 dataset, we achieved highly accurate partitions that best fit the clinical cancer phenotypes. Subsequently, for a DLBCL dataset, we identified three hidden subtypes that showed very different 10-year overall survival rates (90%, 46% and 20%) and were highly significantly (P=0.008) correlated with the clinical survival rate. This study demonstrated that the pathway-based approach is promising for unveiling genetic heterogeneities in complex human diseases.


Assuntos
Heterogeneidade Genética , Linfoma Difuso de Grandes Células B/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA