Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(10): 2075-2090, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37344564

RESUMO

Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI). In this study, we investigated the role of PXR in CKD. Adenine diet-induced CKD (AD) model was established in wild-type and PXR humanized (hPXR) mice, respectively, which were treated with pregnenolone-16α-carbonitrile (PCN, 50 mg/kg, twice a week for 4 weeks) or rifampicin (RIF, 10 mg·kg-1·d-1, for 4 weeks). We showed that both PCN and RIF, which activated mouse and human PXR, respectively, improved renal function and attenuated renal fibrosis in the two types of AD mice. In addition, PCN treatment also alleviated renal fibrosis in unilateral ureter obstruction (UUO) mice. On the contrary, PXR gene deficiency exacerbated renal dysfunction and fibrosis in both adenine- and UUO-induced CKD mice. We found that PCN treatment suppressed the expression of the profibrotic Wnt7a and ß-catenin in AD mice and in cultured mouse renal tubular epithelial cells treated with TGFß1 in vitro. We demonstrated that PXR was colocalized and interacted with p53 in the nuclei of tubular epithelial cells. Overexpression of p53 increased the expression of Wnt7a, ß-catenin and its downstream gene fibronectin. We further revealed that p53 bound to the promoter of Wnt7a gene to increase its transcription and ß-catenin activation, leading to increased expression of the downstream profibrotic genes, which was inhibited by PXR. Taken together, PXR activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/ß-catenin signaling pathway.


Assuntos
Receptor de Pregnano X , Insuficiência Renal Crônica , Via de Sinalização Wnt , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Fibrose , Mamíferos/metabolismo , Receptor de Pregnano X/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Rifampina/farmacologia
2.
Int J Biol Sci ; 19(1): 294-310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594097

RESUMO

Acute kidney injury (AKI) is a pathological condition characterized by a rapid decrease in glomerular filtration rate and nitrogenous waste accumulation during hemodynamic regulation. Alisol B, from Alisma orientale, displays anti-tumor, anti-complement, and anti-inflammatory effects. However, its effect and action mechanism on AKI is still unclear. Herein, alisol B significantly attenuated cisplatin (Cis)-induced renal tubular apoptosis through decreasing expressions levels of cleaved-caspase 3 and cleaved-PARP and the ratio of Bax/Bcl-2 depended on the p53 pathway. Alisol B also alleviated Cis-induced inflammatory response (e.g. the increase of ICAM-1, MCP-1, COX-2, iNOS, IL-6, and TNF-α) and oxidative stress (e.g. the decrease of SOD and GSH, the decrease of HO-1, GCLC, GCLM, and NQO-1) through the NF-κB and Nrf2 pathways. In a target fishing experiment, alisol B bound to soluble epoxide hydrolase (sEH) as a direct cellular target through the hydrogen bond with Gln384, which was further supported by inhibition kinetics and surface plasmon resonance (equilibrium dissociation constant, K D = 1.32 µM). Notably, alisol B enhanced levels of epoxyeicosatrienoic acids and decreased levels of dihydroxyeicosatrienoic acids, indicating that alisol B reduced the sEH activity in vivo. In addition, sEH genetic deletion alleviated Cis-induced AKI and abolished the protective effect of alisol B in Cis-induced AKI as well. These findings indicated that alisol B targeted sEH to alleviate Cis-induced AKI via GSK3ß-mediated p53, NF-κB, and Nrf2 signaling pathways and could be used as a potential therapeutic agent in the treatment of AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Cisplatino/toxicidade , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Apoptose , Rim/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
3.
EBioMedicine ; 76: 103855, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35123268

RESUMO

As a major social and economic burden for the healthcare system, kidney diseases contribute to the constant increase of worldwide deaths. A deeper understanding of the underlying mechanisms governing the etiology, development and progression of kidney diseases may help to identify potential therapeutic targets. As a superfamily of ligand-dependent transcription factors, nuclear receptors (NRs) are critical for the maintenance of normal renal function and their dysfunction is associated with a variety of kidney diseases. Increasing evidence suggests that ligands for NRs protect patients from renal ischemia/reperfusion (I/R) injury, drug-induced acute kidney injury (AKI), diabetic nephropathy (DN), renal fibrosis and kidney cancers. In the past decade, some breakthroughs have been made for the translation of NR ligands into clinical use. This review summarizes the current understanding of several important NRs in renal physiology and pathophysiology and discusses recent findings and applications of NR ligands in the management of kidney diseases.


Assuntos
Injúria Renal Aguda , Nefropatias Diabéticas , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Nefropatias Diabéticas/patologia , Fibrose , Humanos , Rim/patologia , Rim/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Traumatismo por Reperfusão/patologia
4.
Am J Physiol Renal Physiol ; 321(5): F617-F628, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569253

RESUMO

The ligand-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating renal function. Activation of FXR by its specific agonists exerts renoprotective action in animals with acute kidney injury (AKI). In the present study, we aimed to identify naturally occurring agonists of FXR with potential as therapeutic agents in renal ischemia-reperfusion injury. In vitro and in vivo FXR activation was determined by a dual-luciferase assay, docking analysis, site-directed mutagenesis, and whole kidney transcriptome analysis. Wild-type (WT) and FXR knockout (FXR-/-) mice were used to determine the effect of potential FXR agonist on renal ischemia-reperfusion injury (IRI). We found that alisol B 23-acetate (ABA), a major active triterpenoid extracted from Alismatis rhizoma, a well-known traditional Chinese medicine, can activate renal FXR and induce FXR downstream gene expression in mouse kidney. ABA treatment significantly attenuated renal ischemia-reperfusion-induced AKI in WT mice but not in FXR-/- mice. Our results demonstrate that ABA can activate renal FXR to exert renoprotection against ischemia-reperfusion injury-induced AKI. Therefore, ABA may represent a potential therapeutic agent in the treatment of ischemic AKI.NEW & NOTEWORTHY In the present study, we found that alisol B 23-acetate (ABA), an identified natural farnesoid X receptor (FXR) agonist from the well-known traditional Chinese medicine Alismatis rhizoma, protects against ischemic acute kidney injury (AKI) in an FXR-dependent manner, as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative stress, and suppressed inflammatory factor expression. Therefore, ABA may have great potential as a novel therapeutic agent in the treatment of AKI in the future.


Assuntos
Injúria Renal Aguda/prevenção & controle , Colestenonas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Rim/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Células HEK293 , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
5.
J Clin Lab Anal ; 34(8): e23306, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32207210

RESUMO

BACKGROUND: Diverse and circumstantial evidence suggests that schizophrenia is a neurodevelopmental disorder. Genes contributing to neurodevelopment may be potential candidates for schizophrenia. The human SOX11 gene is a member of the developmentally essential SOX (Sry-related HMG box) transcription factor gene family and mapped to chromosome 2p, a potential candidate region for schizophrenia. METHODS: Our previous genome-wide association study (GWAS) implicated an involvement of SOX11 with schizophrenia in a Chinese Han population. To further investigate the association between SOX11 polymorphisms and schizophrenia, we performed an independent replication case-control association study in a sample including 768 cases and 1348 controls. RESULTS: After Bonferroni correction, four SNPs in SOX11 distal 3'UTR significantly associated with schizophrenia in the allele frequencies: rs16864067 (allelic P = .0022), rs12478711 (allelic P = .0009), rs2564045 (allelic P = .0027), and rs2252087 (allelic P = .0025). The haplotype analysis of the selected SNPs showed different haplotype frequencies for two blocks (rs4371338-rs7596062-rs16864067-rs12478711 and rs2564045-rs2252087-rs2564055-rs1366733) between cases and controls. Further luciferase assay and electrophoretic mobility shift assay (EMSA) revealed the schizophrenia-associated SOX11 SNPs may influence SOX11 gene expression, and the risk and non-risk alleles may have different affinity to certain transcription factors and can recruit divergent factors. CONCLUSIONS: Our results suggest SOX11 as a susceptibility gene for schizophrenia, and SOX11 polymorphisms and haplotypes in the distal 3'UTR of the gene might modulate transcriptional activity by serving as cis-regulatory elements and recruiting transcriptional activators or repressors. Also, these SNPs may potentiate as diagnostic markers for the disease.


Assuntos
Regiões 3' não Traduzidas/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição SOXC/genética , Esquizofrenia/genética , Adolescente , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , China , Feminino , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Adulto Jovem
6.
Eur J Med Chem ; 182: 111652, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31494470

RESUMO

Farnesoid X receptor (FXR) is a key regulator in charge of bile acid synthesis, transport, and metabolism. Activation of FXR represses bile acid synthesis and increases its excretion and transport, consequently protecting the liver functions. Thus, FXR is considered as a critical therapeutic target of cholestasis and nonalcoholic steatohepatitis. Herein, we isolated and identified fourteen new protostane-type triterpenoids (1-14) and four known analogues (15-18) from Alisma orientale, and finally constructed a small library of protostane-type triterpenoids (1-70) to investigate their structure-activity relationship with FXR, further leading to obtain compound 15 with potent agonistic activity against FXR (EC50 = 90 nM). Extensive in vitro investigation confirmed high efficacy of compound 15 against FXR in living cell, and revealed its underlying mechanism for FXR activation (amino acid residues Arg331 and Ser332) by molecular docking and site-directed mutagenesis technology.


Assuntos
Produtos Biológicos/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Terpenos/farmacologia , Alisma/química , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Células Cultivadas , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Receptores Citoplasmáticos e Nucleares/genética , Relação Estrutura-Atividade , Terpenos/química , Terpenos/isolamento & purificação
7.
Bioorg Chem ; 79: 250-256, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29775950

RESUMO

A novel 1(2), 2(18)-diseco indole diterpenoid, drechmerin H (1), was isolated from the fermentation broth of Drechmeria sp. together with a new indole diterpenoid, 2'-epi terpendole A (3), and a known analogue, terpendole A (2). Their structures were determined by HRESIMS, 1D and 2D NMR, ECD, and X-ray single crystal diffraction analyses as well as quantum chemical calculation. The abosulte configuration of terpendole A (2) was determined for the first time. Compound 1 displayed the significant agonistic effect on pregnane X receptor (PXR) with EC50 value of 134.91 ±â€¯2.01 nM, and its interaction with PXR was investigated by molecular docking. Meantime, a plausible biosynthetic pathway for compounds 1-3 is also discussed in the present work.


Assuntos
Produtos Biológicos/farmacologia , Diterpenos/farmacologia , Hypocreales/química , Indóis/farmacologia , Receptor de Pregnano X/agonistas , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Indóis/química , Indóis/isolamento & purificação , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA