Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7858, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543805

RESUMO

SUMOylation is a dynamic posttranslational modification, that provides fine-tuning of protein function involved in the cellular response to stress, differentiation, and tissue development. In the adrenal cortex, an emblematic endocrine organ that mediates adaptation to physiological demands, the SUMOylation gradient is inversely correlated with the gradient of cellular differentiation raising important questions about its role in functional zonation and the response to stress. Considering that SUMO-specific protease 2 (SENP2), a deSUMOylating enzyme, is upregulated by Adrenocorticotropic Hormone (ACTH)/cAMP-dependent Protein Kinase (PKA) signalling within the zona fasciculata, we generated mice with adrenal-specific Senp2 loss to address these questions. Disruption of SENP2 activity in steroidogenic cells leads to specific hypoplasia of the zona fasciculata, a blunted reponse to ACTH and isolated glucocorticoid deficiency. Mechanistically, overSUMOylation resulting from SENP2 loss shifts the balance between ACTH/PKA and WNT/ß-catenin signalling leading to repression of PKA activity and ectopic activation of ß-catenin. At the cellular level, this blocks transdifferentiation of ß-catenin-positive zona glomerulosa cells into fasciculata cells and sensitises them to premature apoptosis. Our findings indicate that the SUMO pathway is critical for adrenal homeostasis and stress responsiveness.


Assuntos
Transdiferenciação Celular , Cisteína Endopeptidases , Glucocorticoides , Animais , Camundongos , Córtex Suprarrenal/metabolismo , Corticosteroides/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , beta Catenina/metabolismo , Transdiferenciação Celular/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Glucocorticoides/metabolismo , Via de Sinalização Wnt
2.
Sci Adv ; 8(41): eadd0422, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240276

RESUMO

Unlike most cancers, adrenocortical carcinomas (ACCs) are more frequent in women than in men, but the underlying mechanisms of this sexual dimorphism remain elusive. Here, we show that inactivation of Znrf3 in the mouse adrenal cortex, recapitulating the most frequent alteration in ACC patients, is associated with sexually dimorphic tumor progression. Although female knockouts develop metastatic carcinomas at 18 months, adrenal hyperplasia regresses in male knockouts. This male-specific phenotype is associated with androgen-dependent induction of senescence, recruitment, and differentiation of highly phagocytic macrophages that clear out senescent cells. In contrast, in females, macrophage recruitment is delayed and dampened, which allows for aggressive tumor progression. Consistently, analysis of TCGA-ACC data shows that phagocytic macrophages are more prominent in men and are associated with better prognosis. Together, these data show that phagocytic macrophages are key players in the sexual dimorphism of ACC that could be previously unidentified allies in the fight against this devastating cancer.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/patologia , Androgênios , Animais , Feminino , Masculino , Camundongos , Prognóstico
3.
Cancers (Basel) ; 13(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923277

RESUMO

BACKGROUND: Escherichia coli producing the genotoxin colibactin (CoPEC or colibactin-producing E. coli) abnormally colonize the colonic mucosa of colorectal cancer (CRC) patients. We previously showed that deficiency of autophagy in intestinal epithelial cells (IECs) enhances CoPEC-induced colorectal carcinogenesis in ApcMin/+ mice. Here, we tested if CoPEC trigger tumorigenesis in a mouse model lacking genetic susceptibility or the use of carcinogen. METHODS: Mice with autophagy deficiency in IECs (Atg16l1∆IEC) or wild-type mice (Atg16l1flox/flox) were infected with the CoPEC 11G5 strain or the mutant 11G5∆clbQ incapable of producing colibactin and subjected to 12 cycles of DSS treatment to induce chronic colitis. Mouse colons were used for histological assessment, immunohistochemical and immunoblot analyses for DNA damage marker. Results: 11G5 or 11G5∆clbQ infection increased clinical and histological inflammation scores, and these were further enhanced by IEC-specific autophagy deficiency. 11G5 infection, but not 11G5∆clbQ infection, triggered the formation of invasive carcinomas, and this was further increased by autophagy deficiency. The increase in invasive carcinomas was correlated with enhanced DNA damage and independent of inflammation. Conclusions: CoPEC induce colorectal carcinogenesis in a CRC mouse model lacking genetic susceptibility and carcinogen. This work highlights the role of (i) CoPEC as a driver of CRC development, and (ii) autophagy in inhibiting the carcinogenic properties of CoPEC.

4.
Gastroenterology ; 158(5): 1373-1388, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31917256

RESUMO

BACKGROUND & AIMS: Colibactin-producing Escherichia coli (CoPEC) colonize the colonic mucosa of a higher proportion of patients with vs without colorectal cancer (CRC) and promote colorectal carcinogenesis in susceptible mouse models of CRC. Autophagy degrades cytoplasmic contents, including intracellular pathogens, via lysosomes and regulates intestinal homeostasis. We investigated whether inhibiting autophagy affects colorectal carcinogenesis in susceptible mice infected with CoPEC. METHODS: Human intestinal epithelial cells (IECs) (HCT-116) were infected with a strain of CoPEC (11G5 strain) isolated from a patient or a mutant strain that does not produce colibactin (11G5ΔclbQ). Levels of ATG5, ATG16L1, and SQSTM1 (also called p62) were knocked down in HCT-116 cells using small interfering RNAs. ApcMin/+ mice and ApcMin/+ mice with IEC-specific disruption of Atg16l1 (ApcMin/+/Atg16l1ΔIEC) were infected with 11G5 or 11G5ΔclbQ. Colonic tissues were collected from mice and analyzed for tumor size and number and by immunohistochemical staining, immunoblot, and quantitative reverse transcription polymerase chain reaction for markers of autophagy, DNA damage, cell proliferation, and inflammation. We analyzed levels of messenger RNAs (mRNAs) encoding proteins involved in autophagy in colonic mucosal tissues from patients with sporadic CRC colonized with vs without CoPEC by quantitative reverse-transcription polymerase chain reaction. RESULTS: Patient colonic mucosa with CoPEC colonization had higher levels of mRNAs encoding proteins involved in autophagy than colonic mucosa without these bacteria. Infection of cultured IECs with 11G5 induced autophagy and DNA damage repair, whereas infection with 11G5ΔclbQ did not. Knockdown of ATG5 in HCT-116 cells increased numbers of intracellular 11G5, secretion of interleukin (IL) 6 and IL8, and markers of DNA double-strand breaks but reduced markers of DNA repair, indicating that autophagy is required for bacteria-induced DNA damage repair. Knockdown of ATG5 in HCT-116 cells increased 11G5-induced senescence, promoting proliferation of uninfected cells. Under uninfected condition, ApcMin/+/Atg16l1ΔIEC mice developed fewer and smaller colon tumors than ApcMin/+ mice. However, after infection with 11G5, ApcMin/+/Atg16l1ΔIEC mice developed more and larger tumors, with a significant increase in mean histologic score, than infected ApcMin/+ mice. Increased levels of Il6, Tnf, and Cxcl1 mRNAs, decreased level of Il10 mRNA, and increased markers of DNA double-strand breaks and proliferation were observed in the colonic mucosa of 11G5-infected ApcMin/+/Atg16l1ΔIEC mice vs 11G5-infected ApcMin/+ mice. CONCLUSION: Infection of IECs and susceptible mice with CoPEC promotes autophagy, which is required to prevent colorectal tumorigenesis. Loss of ATG16L1 from IECs increases markers of inflammation, DNA damage, and cell proliferation and increases colorectal tumorigenesis in 11G5-infected ApcMin/+ mice. These findings indicate the importance of autophagy in response to CoPEC infection, and strategies to induce autophagy might be developed for patients with CRC and CoPEC colonization.


Assuntos
Autofagia , Carcinogênese/imunologia , Colo/microbiologia , Neoplasias do Colo/imunologia , Mucosa Intestinal/microbiologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/imunologia , Proteínas Relacionadas à Autofagia/metabolismo , Carcinogênese/efeitos dos fármacos , Proliferação de Células , Colo/imunologia , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Escherichia coli/imunologia , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Transgênicos , Peptídeos/toxicidade , Policetídeos/toxicidade , RNA Interferente Pequeno/metabolismo
5.
Int J Mol Sci ; 18(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632155

RESUMO

Colorectal cancer, the fourth leading cause of cancer-related death worldwide, is a multifactorial disease involving genetic, environmental and lifestyle risk factors. In addition, increased evidence has established a role for the intestinal microbiota in the development of colorectal cancer. Indeed, changes in the intestinal microbiota composition in colorectal cancer patients compared to control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. This review will summarize the current knowledge about the potential links between the intestinal microbiota and colorectal cancer, with a focus on the pro-carcinogenic properties of bacterial microbiota such as induction of inflammation, the biosynthesis of genotoxins that interfere with cell cycle regulation and the production of toxic metabolites. Finally, we will describe the potential therapeutic strategies based on intestinal microbiota manipulation for colorectal cancer treatment.


Assuntos
Bactérias/patogenicidade , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/microbiologia , Imunidade Adaptativa , Bactérias/classificação , Bactérias/metabolismo , Carcinogênese , Ciclo Celular/efeitos dos fármacos , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Alimentos , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Mutagênicos/efeitos adversos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA