Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 35(2): 316-331.e6, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36584675

RESUMO

Apoptotic cell (AC) clearance (efferocytosis) is performed by phagocytes, such as macrophages, that inhabit harsh physiological environments. Here, we find that macrophages display enhanced efferocytosis under prolonged (chronic) physiological hypoxia, characterized by increased internalization and accelerated degradation of ACs. Transcriptional and translational analyses revealed that chronic physiological hypoxia induces two distinct but complimentary states. The first, "primed" state, consists of concomitant transcription and translation of metabolic programs in AC-naive macrophages that persist during efferocytosis. The second, "poised" state, consists of transcription, but not translation, of phagocyte function programs in AC-naive macrophages that are translated during efferocytosis. Mechanistically, macrophages efficiently flux glucose into a noncanonical pentose phosphate pathway (PPP) loop to enhance NADPH production. PPP-derived NADPH directly supports enhanced efferocytosis under physiological hypoxia by ensuring phagolysosomal maturation and redox homeostasis. Thus, macrophages residing under physiological hypoxia adopt states that support cell fitness and ensure performance of essential homeostatic functions rapidly and safely.


Assuntos
Macrófagos , Oxigênio , Humanos , Oxigênio/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Fagocitose , Hipóxia/metabolismo , Apoptose/fisiologia
2.
Dev Cell ; 57(12): 1512-1528.e5, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35688158

RESUMO

Cardiac injury leads to the loss of cardiomyocytes, which are rapidly replaced by the proliferation of the surviving cells in zebrafish, but not in mammals. In both the regenerative zebrafish and non-regenerative mammals, cardiac injury induces a sustained macrophage response. Macrophages are required for cardiomyocyte proliferation during zebrafish cardiac regeneration, but the mechanisms whereby macrophages facilitate this crucial process are fundamentally unknown. Using heartbeat-synchronized live imaging, RNA sequencing, and macrophage-null genotypes in the larval zebrafish cardiac injury model, we characterize macrophage function and reveal that these cells activate the epicardium, inducing cardiomyocyte proliferation. Mechanistically, macrophages are specifically recruited to the epicardial-myocardial niche, triggering the expansion of the epicardium, which upregulates vegfaa expression to induce cardiomyocyte proliferation. Our data suggest that epicardial Vegfaa augments a developmental cardiac growth pathway via increased endocardial notch signaling. The identification of this macrophage-dependent mechanism of cardiac regeneration highlights immunomodulation as a potential strategy for enhancing mammalian cardiac repair.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Proliferação de Células , Coração/fisiologia , Larva/metabolismo , Macrófagos/metabolismo , Mamíferos/metabolismo , Miócitos Cardíacos/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Sci Immunol ; 7(71): eabm4032, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35559667

RESUMO

Epithelial tissues such as lung and skin are exposed to the environment and therefore particularly vulnerable to damage during injury or infection. Rapid repair is therefore essential to restore function and organ homeostasis. Dysregulated epithelial tissue repair occurs in several human disease states, yet how individual cell types communicate and interact to coordinate tissue regeneration is incompletely understood. Here, we show that pannexin 1 (Panx1), a cell membrane channel activated by caspases in dying cells, drives efficient epithelial regeneration after tissue injury by regulating injury-induced epithelial proliferation. Lung airway epithelial injury promotes the Panx1-dependent release of factors including ATP, from dying epithelial cells, which regulates macrophage phenotype after injury. This process, in turn, induces a reparative response in tissue macrophages that includes the induction of the soluble mitogen amphiregulin, which promotes injury-induced epithelial proliferation. Analysis of regenerating lung epithelium identified Panx1-dependent induction of Nras and Bcas2, both of which positively promoted epithelial proliferation and tissue regeneration in vivo. We also established that this role of Panx1 in boosting epithelial repair after injury is conserved between mouse lung and zebrafish tailfin. These data identify a Panx1-mediated communication circuit between epithelial cells and macrophages as a key step in promoting epithelial regeneration after injury.


Assuntos
Conexinas , Células Epiteliais , Proteínas do Tecido Nervoso , Ferimentos e Lesões , Animais , Conexinas/genética , Conexinas/metabolismo , Células Epiteliais/citologia , Pulmão/metabolismo , Camundongos , Proteínas de Neoplasias , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peixe-Zebra
4.
Int Rev Cell Mol Biol ; 367: 1-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461655

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the largest global pandemic in living memory, with between 4.5 and 15M deaths globally from coronavirus disease 2019 (COVID-19). This has led to an unparalleled global, collaborative effort to understand the pathogenesis of this devastating disease using state-of-the-art technologies. A consistent feature of severe COVID-19 is dysregulation of pulmonary macrophages, cells that under normal physiological conditions play vital roles in maintaining lung homeostasis and immunity. In this article, we will discuss a selection of the pivotal findings examining the role of monocytes and macrophages in SARS-CoV-2 infection and place this in context of recent advances made in understanding the fundamental immunobiology of these cells to try to understand how key homeostatic cells come to be a central pathogenic component of severe COVID-19 and key cells to target for therapeutic gain.


Assuntos
COVID-19 , Humanos , Macrófagos , Macrófagos Alveolares , RNA Viral , SARS-CoV-2
5.
Science ; 375(6585): 1182-1187, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271315

RESUMO

Apoptosis of cells and their subsequent removal through efferocytosis occurs in nearly all tissues during development, homeostasis, and disease. However, it has been difficult to track cell death and subsequent corpse removal in vivo. We developed a genetically encoded fluorescent reporter, CharON (Caspase and pH Activated Reporter, Fluorescence ON), that could track emerging apoptotic cells and their efferocytic clearance by phagocytes. Using Drosophila expressing CharON, we uncovered multiple qualitative and quantitative features of coordinated clearance of apoptotic corpses during embryonic development. When confronted with high rates of emerging apoptotic corpses, the macrophages displayed heterogeneity in engulfment behaviors, leading to some efferocytic macrophages carrying high corpse burden. Overburdened macrophages were compromised in clearing wound debris. These findings reveal known and unexpected features of apoptosis and macrophage efferocytosis in vivo.


Assuntos
Apoptose , Rastreamento de Células , Drosophila/embriologia , Desenvolvimento Embrionário , Macrófagos/fisiologia , Fagocitose , Animais , Concentração de Íons de Hidrogênio
6.
Inflammation ; 45(2): 567-572, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34697723

RESUMO

The coronavirus SARS-CoV-2 contributes to morbidity and mortality mainly as a result of immune-pathology in the lungs. Recent data has shown multi-system involvement with widespread viral tropism. Here we present a detailed intestinal protein characterisation of SARS-Cov-2 entry molecules ACE2 and TMPRSS2 in patients with inflammatory bowel disease ([IBD]; ulcerative colitis [UC] and Crohn's disease [CD]) with age- and sex-matched non-IBD controls, and in those with fatal COVID-19 infection. In our dataset, ACE2 and TMPRSS2 displayed a membrane enterocyte staining in the ileum (due to presence of brush border/microvilli) in contrast to a cytoplasmic pattern in the colon. We also showed a high ACE2/low TMPRSS2 expression pattern in the ileum with a reverse trend in the colon. In UC, colonic ACE2 and TMPRSS2 are cytoplasmic in nature, with significantly higher ACE2 staining intensity compared to non-IBD controls. In inflamed and unaffected IBD mucosa, ileal and colonic enterocyte ACE2 and TMPRSS2 expressions are not modified in the histologic presence of inflammation. We observed immune cells within the lamina propria that expressed ACE2 and TMPRSS2, at higher frequencies in IBD when compared to non-IBD controls. These were identified as plasma cells with multiple myeloma oncogene 1/interferon regulatory factor 4 (MUM1/IRF4) expression. We further analysed the gut histology of six fatal COVID-19 cases, with no difference in colonic and ileal ACE2/TMRPSS2 staining (compared to non-IBD controls) and identified ACE2 + lamina propria plasma cells. Of interest, in this COVID-19 cohort, there was no histologic evidence gut inflammation despite known evidence of viral tropism within the enterocytes. Our data provides evidence for tissue expression of entry molecules ACE2 and TMPRSS2 including a close apposition to plasma cells - both pointing towards a role of the gut in the antecedent immune response to SARS-CoV-2 infection.


Assuntos
COVID-19 , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Enzima de Conversão de Angiotensina 2 , Humanos , SARS-CoV-2 , Serina Endopeptidases
7.
Am J Respir Cell Mol Biol ; 66(2): 196-205, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34710339

RESUMO

Immunopathology occurs in the lung and spleen in fatal coronavirus disease (COVID-19), involving monocytes/macrophages and plasma cells. Antiinflammatory therapy reduces mortality, but additional therapeutic targets are required. We aimed to gain mechanistic insight into COVID-19 immunopathology by targeted proteomic analysis of pulmonary and splenic tissues. Lung parenchymal and splenic tissue was obtained from 13 postmortem examinations of patients with fatal COVID-19. Control tissue was obtained from cancer resection samples (lung) and deceased organ donors (spleen). Protein was extracted from tissue by phenol extraction. Olink multiplex immunoassay panels were used for protein detection and quantification. Proteins with increased abundance in the lung included MCP-3, antiviral TRIM21, and prothrombotic TYMP. OSM and EN-RAGE/S100A12 abundance was correlated and associated with inflammation severity. Unsupervised clustering identified "early viral" and "late inflammatory" clusters with distinct protein abundance profiles, and differences in illness duration before death and presence of viral RNA. In the spleen, lymphocyte chemotactic factors and CD8A were decreased in abundance, and proapoptotic factors were increased. B-cell receptor signaling pathway components and macrophage colony stimulating factor (CSF-1) were also increased. Additional evidence for a subset of host factors (including DDX58, OSM, TYMP, IL-18, MCP-3, and CSF-1) was provided by overlap between 1) differential abundance in spleen and lung tissue; 2) meta-analysis of existing datasets; and 3) plasma proteomic data. This proteomic analysis of lung parenchymal and splenic tissue from fatal COVID-19 provides mechanistic insight into tissue antiviral responses, inflammation and disease stages, macrophage involvement, pulmonary thrombosis, splenic B-cell activation, and lymphocyte depletion.


Assuntos
COVID-19/imunologia , Regulação da Expressão Gênica/imunologia , Pulmão/imunologia , SARS-CoV-2/imunologia , Baço/imunologia , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Inflamação/imunologia , Masculino , Proteômica
9.
Immunity ; 54(8): 1715-1727.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34283971

RESUMO

Allergic airway inflammation is driven by type-2 CD4+ T cell inflammatory responses. We uncover an immunoregulatory role for the nucleotide release channel, Panx1, in T cell crosstalk during airway disease. Inverse correlations between Panx1 and asthmatics and our mouse models revealed the necessity, specificity, and sufficiency of Panx1 in T cells to restrict inflammation. Global Panx1-/- mice experienced exacerbated airway inflammation, and T-cell-specific deletion phenocopied Panx1-/- mice. A transgenic designed to re-express Panx1 in T cells reversed disease severity in global Panx1-/- mice. Panx1 activation occurred in pro-inflammatory T effector (Teff) and inhibitory T regulatory (Treg) cells and mediated the extracellular-nucleotide-based Treg-Teff crosstalk required for suppression of Teff cell proliferation. Mechanistic studies identified a Salt-inducible kinase-dependent phosphorylation of Panx1 serine 205 important for channel activation. A genetically targeted mouse expressing non-phosphorylatable Panx1S205A phenocopied the exacerbated inflammation in Panx1-/- mice. These data identify Panx1-dependent Treg:Teff cell communication in restricting airway disease.


Assuntos
Asma/imunologia , Comunicação Celular/imunologia , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Conexinas/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sistema Respiratório/imunologia
10.
Open Forum Infect Dis ; 8(2): ofaa640, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33553478

RESUMO

Pulmonary microthrombosis and vasculitis occur in fatal coronavirus disease 2019. To determine whether these processes occur in other life-threatening respiratory virus infections, we identified autopsy studies of fatal influenza (n  =  455 patients), severe acute respiratory syndrome ([SARS] n  =  37), Middle East respiratory syndrome (n  =  2), adenovirus (n  =  34), and respiratory syncytial virus (n  =  30). Histological evidence of thrombosis was frequently present in adults with fatal influenza and SARS, with vasculitis also reported.

11.
Cells ; 10(2)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562816

RESUMO

Respiratory diseases are frequently characterised by epithelial injury, airway inflammation, defective tissue repair, and airway remodelling. This may occur in a subacute or chronic context, such as asthma and chronic obstructive pulmonary disease, or occur acutely as in pathogen challenge and acute respiratory distress syndrome (ARDS). Despite the frequent challenge of lung homeostasis, not all pulmonary insults lead to disease. Traditionally thought of as a quiescent organ, emerging evidence highlights that the lung has significant capacity to respond to injury by repairing and replacing damaged cells. This occurs with the appropriate and timely resolution of inflammation and concurrent initiation of tissue repair programmes. Airway epithelial cells are key effectors in lung homeostasis and host defence; continual exposure to pathogens, toxins, and particulate matter challenge homeostasis, requiring robust defence and repair mechanisms. As such, the epithelium is critically involved in the return to homeostasis, orchestrating the resolution of inflammation and initiating tissue repair. This review examines the pivotal role of pulmonary airway epithelial cells in initiating and moderating tissue repair and restitution. We discuss emerging evidence of the interactions between airway epithelial cells and candidate stem or progenitor cells to initiate tissue repair as well as with cells of the innate and adaptive immune systems in driving successful tissue regeneration. Understanding the mechanisms of intercellular communication is rapidly increasing, and a major focus of this review includes the various mediators involved, including growth factors, extracellular vesicles, soluble lipid mediators, cytokines, and chemokines. Understanding these areas will ultimately identify potential cells, mediators, and interactions for therapeutic targeting.


Assuntos
Células Epiteliais/metabolismo , Inflamação/metabolismo , Lesão Pulmonar/terapia , Humanos , Cicatrização
12.
Methods Mol Biol ; 2241: 113-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33486732

RESUMO

Eosinophil apoptosis (programmed cell death) plays an important role in several inflammatory and allergic conditions. Apoptosis triggers various mechanisms including activation of cysteine-aspartic proteases (caspases) and is characterized by morphological and biochemical changes. These include cellular condensation, nuclear fragmentation, increased mitochondrial permeability with loss of membrane potential, and exposure of phosphatidylserine on the cell membrane. A greater understanding of apoptotic mechanisms, subsequent phagocytosis (efferocytosis), and regulation of these processes is critical to understanding disease pathogenesis and development of potential novel therapeutic agents. Release of soluble factors and alterations to surface marker expression by eosinophils undergoing apoptosis aid them in signaling their presence to the immediate environment, and their subsequent recognition by phagocytic cells such as macrophages. Uptake of apoptotic cells usually suppresses inflammation by restricting proinflammatory responses and promoting anti-inflammatory and tissue repair responses. This, in turn, promotes resolution of inflammation. Defects in the apoptotic or efferocytosis mechanisms perpetuate inflammation, resulting in chronic inflammation and enhanced disease severity. This can be due to increased eosinophil life span or cell necrosis characterized by loss of cell membrane integrity and release of toxic intracellular mediators. In this chapter, we detail some of the key assays that are used to assess eosinophil apoptosis, as well as the intracellular signaling pathways involved and phagocytic clearance of these cells.


Assuntos
Apoptose/fisiologia , Eosinófilos/citologia , Imuno-Histoquímica/métodos , Fagocitose/fisiologia , Anexina A5/química , Apoptose/imunologia , Transporte Biológico , Caspases/metabolismo , Eosinófilos/fisiologia , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Potenciais da Membrana/fisiologia , Microscopia/métodos , Microscopia Eletrônica/métodos , Mitocôndrias/metabolismo , Fagócitos/metabolismo , Fagócitos/fisiologia , Fagocitose/imunologia , Propídio/química , Transdução de Sinais
13.
Am J Respir Crit Care Med ; 203(2): 192-201, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33217246

RESUMO

Rationale: In life-threatening coronavirus disease (COVID-19), corticosteroids reduce mortality, suggesting that immune responses have a causal role in death. Whether this deleterious inflammation is primarily a direct reaction to the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or an independent immunopathologic process is unknown.Objectives: To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses and the relationships among viral presence, inflammation, and organ injury.Methods: Tissue was acquired from 11 detailed postmortem examinations. SARS-CoV-2 organotropism was mapped by using multiplex PCR and sequencing, with cellular resolution achieved by in situ viral S (spike) protein detection. Histologic evidence of inflammation was quantified from 37 anatomic sites, and the pulmonary immune response was characterized by using multiplex immunofluorescence.Measurements and Main Results: Multiple aberrant immune responses in fatal COVID-19 were found, principally involving the lung and reticuloendothelial system, and these were not clearly topologically associated with the virus. Inflammation and organ dysfunction did not map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein between or within tissues. An arteritis was identified in the lung, which was further characterized as a monocyte/myeloid-rich vasculitis, and occurred together with an influx of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, stereotyped abnormal reticuloendothelial responses, including excessive reactive plasmacytosis and iron-laden macrophages, were present and dissociated from viral presence in lymphoid tissues.Conclusions: Tissue-specific immunopathology occurs in COVID-19, implicating a significant component of the immune-mediated, virus-independent immunopathologic process as a primary mechanism in severe disease. Our data highlight novel immunopathologic mechanisms and validate ongoing and future efforts to therapeutically target aberrant macrophage and plasma-cell responses as well as promote pathogen tolerance in COVID-19.


Assuntos
COVID-19/imunologia , Inflamação/virologia , Pulmão/imunologia , Insuficiência de Múltiplos Órgãos/virologia , SARS-CoV-2/imunologia , Idoso , Idoso de 80 Anos ou mais , Autopsia , Biópsia , COVID-19/patologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Feminino , Imunofluorescência , Humanos , Inflamação/imunologia , Inflamação/patologia , Pulmão/patologia , Pulmão/virologia , Masculino , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/patologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença
14.
J Inflamm (Lond) ; 17(1): 34, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33292269

RESUMO

BACKGROUND: Neutrophils rapidly respond to and clear infection from tissues, but can also induce tissue damage through excessive degranulation, when acute inflammation proceeds unchecked. A number of key neutrophil functions, including adhesion-dependent degranulation, are controlled by src family kinases. Dasatinib is a potent src inhibitor used in treating patients with chronic myeloid leukaemia and treatment-resistant acute lymphoblastic leukaemia. We hypothesized that dasatinib would attenuate acute inflammation by inhibiting neutrophil recruitment, degranulation and endothelial cell injury, without impairing bacterial clearance, in a murine model of bacteria-induced acute lung injury. C57BL/6 mice received intratracheal Escherichia coli, and were treated with intraperitoneal dasatinib or control. Bacterial clearance, lung injury, and markers of neutrophil recruitment and degranulation were measured. Separately, human blood neutrophils were exposed to dasatinib or control, and the effects on a range of neutrophil functions assessed. RESULTS: Dasatinib was associated with a dose-dependent significant increase in E. coli in the mouse lung, accompanied by impairment of organ function, reflected in significantly increased protein leak across the alveolar-capillary membrane. However, the number of neutrophils entering the lung was unaffected, suggesting that dasatinib impairs neutrophil function independent of migration. Dasatinib did not cause direct toxicity to human neutrophils, but led to significant reductions in phagocytosis of E. coli, adhesion, chemotaxis, generation of superoxide anion and degranulation of primary and secondary granules. However, no biologically important effect of dasatinib on neutrophil degranulation was observed in mice. CONCLUSIONS: Contrary to our starting hypothesis, src kinase inhibition with dasatinib had a detrimental effect on bacterial clearance in the mouse lung and therefore does not represent an attractive therapeutic strategy to treat primary infective lung inflammation. Data from human neutrophils suggest that dasatanib has inhibitory effects on a range of neutrophil functions.

15.
Thorax ; 75(7): 600-605, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32303624

RESUMO

Eosinophils are key effector cells in allergic diseases. Here we investigated Mcl-1 (an anti-apoptotic protein) in experimental allergic airway inflammation using transgenic overexpressing human Mcl-1 mice (hMcl-1) and reducing Mcl-1 by a cyclin-dependent kinase inhibitor. Overexpression of Mcl-1 exacerbated allergic airway inflammation, with increased bronchoalveolar lavage fluid cellularity, eosinophil numbers and total protein, and an increase in airway mucus production. Eosinophil apoptosis was suppressed by Mcl-1 overexpression, with this resistance to apoptosis attenuated by cyclin-dependent kinase inhibition which also rescued Mcl-1-exacerbated allergic airway inflammation. We propose that targeting Mcl-1 may be beneficial in treatment of allergic airway disease.


Assuntos
Asma/genética , Eosinófilos/patologia , Regulação da Expressão Gênica , Hipersensibilidade/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , RNA/genética , Animais , Apoptose , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Eosinófilos/metabolismo , Feminino , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Contagem de Leucócitos , Camundongos , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese
16.
Nat Cell Biol ; 21(12): 1532-1543, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792382

RESUMO

Apoptotic cell clearance (efferocytosis) elicits an anti-inflammatory response by phagocytes, but the mechanisms that underlie this response are still being defined. Here, we uncover a chloride-sensing signalling pathway that controls both the phagocyte 'appetite' and its anti-inflammatory response. Efferocytosis transcriptionally altered the genes that encode the solute carrier (SLC) proteins SLC12A2 and SLC12A4. Interfering with SLC12A2 expression or function resulted in a significant increase in apoptotic corpse uptake per phagocyte, whereas the loss of SLC12A4 inhibited corpse uptake. In SLC12A2-deficient phagocytes, the canonical anti-inflammatory program was replaced by pro-inflammatory and oxidative-stress-associated gene programs. This 'switch' to pro-inflammatory sensing of apoptotic cells resulted from the disruption of the chloride-sensing pathway (and not due to corpse overload or poor degradation), including the chloride-sensing kinases WNK1, OSR1 and SPAK-which function upstream of SLC12A2-had a similar effect on efferocytosis. Collectively, the WNK1-OSR1-SPAK-SLC12A2/SLC12A4 chloride-sensing pathway and chloride flux in phagocytes are key modifiers of the manner in which phagocytes interpret the engulfed apoptotic corpse.


Assuntos
Apoptose/fisiologia , Cloretos/metabolismo , Inflamação/fisiopatologia , Transdução de Sinais/fisiologia , Animais , Apoptose/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Inflamação/genética , Inflamação/metabolismo , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Fagócitos/fisiologia , Fagocitose/genética , Fagocitose/fisiologia , Transdução de Sinais/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
17.
J Allergy Clin Immunol ; 142(6): 1884-1893.e6, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29428392

RESUMO

BACKGROUND: Eosinophils play a central role in propagation of allergic diseases, including asthma. Both recruitment and retention of eosinophils regulate pulmonary eosinophilia, but the question of whether alterations in apoptotic cell clearance by phagocytes contributes directly to resolution of allergic airway inflammation remains unexplored. OBJECTIVES: In this study we investigated the role of the receptor tyrosine kinase Mer in mediating apoptotic eosinophil clearance and allergic airway inflammation resolution in vivo to establish whether apoptotic cell clearance directly affects the resolution of allergic airway inflammation. METHODS: Alveolar and bone marrow macrophages were used to study Mer-mediated phagocytosis of apoptotic eosinophils. Allergic airway inflammation resolution was modeled in mice by using ovalbumin. Fluorescently labeled apoptotic cells were administered intratracheally or eosinophil apoptosis was driven by administration of dexamethasone to determine apoptotic cell clearance in vivo. RESULTS: Inhibition or absence of Mer impaired phagocytosis of apoptotic human and mouse eosinophils by macrophages. Mer-deficient mice showed delayed resolution of ovalbumin-induced allergic airway inflammation, together with increased airway responsiveness to aerosolized methacholine, increased bronchoalveolar lavage fluid protein levels, altered cytokine production, and an excess of uncleared dying eosinophils after dexamethasone treatment. Alveolar macrophage phagocytosis was significantly Mer dependent, with the absence of Mer attenuating apoptotic cell clearance in vivo to enhance inflammation in response to apoptotic cells. CONCLUSIONS: We demonstrate that Mer-mediated apoptotic cell clearance by phagocytes contributes to resolution of allergic airway inflammation, suggesting that augmenting apoptotic cell clearance is a potential therapeutic strategy for treating allergic airway inflammation.


Assuntos
Apoptose/imunologia , Eosinófilos/imunologia , Macrófagos/imunologia , Hipersensibilidade Respiratória/imunologia , c-Mer Tirosina Quinase/imunologia , Alérgenos/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Feminino , Humanos , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia , Fagocitose , c-Mer Tirosina Quinase/genética
18.
Thorax ; 73(2): 134-144, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28916704

RESUMO

BACKGROUND: Cystic fibrosis (CF) lung disease is defined by large numbers of neutrophils and associated damaging products in the airway. Delayed neutrophil apoptosis is described in CF although it is unclear whether this is a primary neutrophil defect or a response to chronic inflammation. Increased levels of neutrophil extracellular traps (NETs) have been measured in CF and we aimed to investigate the causal relationship between these phenomena and their potential to serve as a driver of inflammation. We hypothesised that the delay in apoptosis in CF is a primary defect and preferentially allows CF neutrophils to form NETs, contributing to inflammation. METHODS: Blood neutrophils were isolated from patients with CF, CF pigs and appropriate controls. Neutrophils were also obtained from patients with CF before and after commencing ivacaftor. Apoptosis was assessed by morphology and flow cytometry. NET formation was determined by fluorescent microscopy and DNA release assays. NET interaction with macrophages was examined by measuring cytokine generation with ELISA and qRT-PCR. RESULTS: CF neutrophils live longer due to decreased apoptosis. This was observed in both cystic fibrosis transmembrane conductance regulator (CFTR) null piglets and patients with CF, and furthermore was reversed by ivacaftor (CFTR potentiator) in patients with gating (G551D) mutations. CF neutrophils formed more NETs and this was reversed by cyclin-dependent kinase inhibitor exposure. NETs provided a proinflammatory stimulus to macrophages, which was enhanced in CF. CONCLUSIONS: CF neutrophils have a prosurvival phenotype that is associated with an absence of CFTR function and allows increased NET production, which can in turn induce inflammation. Augmenting neutrophil apoptosis in CF may allow more appropriate neutrophil disposal, decreasing NET formation and thus inflammation.


Assuntos
Apoptose/fisiologia , Fibrose Cística/patologia , Armadilhas Extracelulares , Neutrófilos/fisiologia , Adulto , Animais , Estudos de Casos e Controles , Sobrevivência Celular , Fibrose Cística/sangue , Fibrose Cística/imunologia , Humanos , Inflamação , Suínos , Fatores de Tempo
20.
Sci Rep ; 5: 36980, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833165

RESUMO

Neutrophilic inflammation is tightly regulated and subsequently resolves to limit tissue damage and promote repair. When the timely resolution of inflammation is dysregulated, tissue damage and disease results. One key control mechanism is neutrophil apoptosis, followed by apoptotic cell clearance by phagocytes such as macrophages. Cyclin-dependent kinase (CDK) inhibitor drugs induce neutrophil apoptosis in vitro and promote resolution of inflammation in rodent models. Here we present the first in vivo evidence, using pharmacological and genetic approaches, that CDK9 is involved in the resolution of neutrophil-dependent inflammation. Using live cell imaging in zebrafish with labelled neutrophils and macrophages, we show that pharmacological inhibition, morpholino-mediated knockdown and CRISPR/cas9-mediated knockout of CDK9 enhances inflammation resolution by reducing neutrophil numbers via induction of apoptosis after tailfin injury. Importantly, knockdown of the negative regulator La-related protein 7 (LaRP7) increased neutrophilic inflammation. Our data show that CDK9 is a possible target for controlling resolution of inflammation.


Assuntos
Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Técnicas de Silenciamento de Genes/métodos , Inflamação/imunologia , Neutrófilos/citologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Flavonoides/farmacologia , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA