Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell Death Dis ; 13(12): 1046, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522309

RESUMO

Interleukin-8 (IL-8/CXCL8) is a pro-angiogenic and pro-inflammatory chemokine that plays a role in cancer development. Non-small cell lung carcinoma (NSCLC) produces high amounts of IL-8, which is associated with poor prognosis and resistance to chemo-radio and immunotherapy. However, the signaling pathways that lead to IL-8 production in NSCLC are unresolved. Here, we show that expression and release of IL-8 are regulated autonomously by TRAIL death receptors in several squamous and adenocarcinoma NSCLC cell lines. NSCLC constitutively secrete IL-8, which could be further enhanced by glucose withdrawal or by treatment with TRAIL or TNFα. In A549 cells, constitutive and inducible IL-8 production was dependent on NF-κB and MEK/ERK MAP Kinases. DR4 and DR5, known regulators of these signaling pathways, participated in constitutive and glucose deprivation-induced IL-8 secretion. These receptors were mainly located intracellularly. While DR4 signaled through the NF-κB pathway, DR4 and DR5 both regulated the ERK-MAPK and Akt pathways. FADD, caspase-8, RIPK1, and TRADD also regulated IL-8. Analysis of mRNA expression data from patients indicated that IL-8 transcripts correlated with TRAIL, DR4, and DR5 expression levels. Furthermore, TRAIL receptor expression levels also correlated with markers of angiogenesis and neutrophil infiltration in lung squamous carcinoma and adenocarcinoma. Collectively, these data suggest that TRAIL receptor signaling contributes to a pro-tumorigenic inflammatory signature associated with NSCLC.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Interleucina-8/genética , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Glucose , Apoptose
2.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887177

RESUMO

The surgically induced remission of liver disease represents a model to investigate the signalling processes that trigger the development of nonalcoholic steatohepatitis with the aim of identifying novel therapeutic targets. We recruited patients with severe obesity with or without nonalcoholic steatohepatitis and obtained liver and plasma samples before and after laparoscopic sleeve gastrectomy for immunoblotting, immunocytochemical, metabolomic, transcriptomic and epigenetic analyses. Functional studies were performed in HepG2 cells and primary hepatocytes. Surgery was associated with a decrease in the inflammatory response and revealed the role of mitogen-activated protein kinases. Nonalcoholic steatohepatitis was associated with an increased glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy and affected methylation-related epigenomic remodelling enzymes. Hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. Our results suggest that the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation play a crucial role in the inefficient adaptive responses leading to steatohepatitis in obesity.


Assuntos
Laparoscopia , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Gastrectomia/métodos , Humanos , Ácidos Cetoglutáricos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade Mórbida/cirurgia , Serina-Treonina Quinases TOR
3.
J Hepatol ; 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33961941

RESUMO

BACKGROUND & AIMS: A holistic insight on the relationship between obesity and metabolic dysfunction-associated fatty liver disease is an unmet clinical need. Omics investigations can be used to investigate the multifaceted role of altered mitochondrial pathways to promote nonalcoholic steatohepatitis, a major risk factor for liver disease-associated death. There are no specific treatments but remission via surgery might offer an opportunity to examine the signaling processes that govern the complex spectrum of chronic liver diseases observed in extreme obesity. We aim to assess the emerging relationship between metabolism, methylation and liver disease. METHODS: We tailed the flow of information, before and after steatohepatitis remission, from biochemical, histological, and multi-omics analyses in liver biopsies from patients with extreme obesity and successful bariatric surgery. Functional studies were performed in HepG2 cells and primary hepatocytes. RESULTS: The reversal of hepatic mitochondrial dysfunction and the control of oxidative stress and inflammatory responses revealed the regulatory role of mitogen-activated protein kinases. The reversible metabolic rearrangements leading to steatohepatitis increased the glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for the adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy. The signaling activity of α-ketoglutarate and the associated metabolites also affected methylation-related epigenomic remodeling enzymes. Integrative analysis of hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. CONCLUSION: We provide evidence supporting the multifaceted potential of the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation as a conceivable source of the inefficient adaptive responses leading to steatohepatitis. LAY SUMMARY: Steatohepatitis is a frequent and threatening complication of extreme obesity without specific treatment. Omics technologies can be used to identify therapeutic targets. We highlight increased glutaminolysis-induced α-ketoglutarate production as a potential source of signals promoting and exacerbating steatohepatitis.

4.
Sci Rep ; 11(1): 1343, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446705

RESUMO

Patients with morbid obesity frequently present non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) associated with pro-atherogenic alterations. Laparoscopic sleeve gastrectomy (LSG) is an effective treatment for weight reduction, and for the remission of hepatic alterations. Using 1H-nuclear magnetic resonance (1H-NMR), we investigated the effects of LSG on lipoprotein and glycoprotein profile in patients with morbid obesity and liver disease. We included 154 patients with morbid obesity (49 non-NASH, 54 uncertain NASH, 51 definite NASH). A blood sample was obtained before surgery and, in patients with definite NASH, one year after surgery. Patients with NASH had increased concentrations of medium and small VLDL particles, VLDL and IDL cholesterol concentrations, IDL, LDL, and HDL triglyceride concentrations, and elevated glycoprotein levels. These changes were more marked in patients with type 2 diabetes mellitus. LSG produced significant decreases in the concentration of VLDL particles, VLDL cholesterol and triglycerides, an increase in the concentration LDL particles and LDL cholesterol concentrations, and a decrease in protein glycation. We conclude that patients with obesity and NASH had significant alterations in circulating levels of lipoproteins and glycoproteins that were associated with the severity of the disease. Most of these changes were reversed post-LSG.


Assuntos
Diabetes Mellitus Tipo 2 , Glicoproteínas/sangue , Laparoscopia , Lipoproteínas/sangue , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Adulto , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/cirurgia , Obesidade Mórbida/sangue , Obesidade Mórbida/cirurgia , Estudos Retrospectivos
5.
J Nutr Biochem ; 89: 108559, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264665

RESUMO

BACKGROUND: Obesity is a chronic progressive disease with several metabolic alterations. Nonalcoholic fatty liver disease (NAFLD) is an important comorbidity of obesity that can progress to nonalcoholic steatohepatitis (NASH), cirrhosis or hepatocarcinoma. This study aimed at clarifying the molecular mechanisms underlying the metabolic alterations in hepatic and adipose tissue during high-fat high-sucrose diet-induced NAFLD development in mice. METHODS: Twenty-four male mice (C57BL/6J) were randomly allocated into 3 groups (n = 8 mice per group) to receive a chow diet, a high-fat diet (HFD), or a high-fat high-sucrose diet (HF-HSD) for 20 weeks. At sacrifice, liver and adipose tissue were obtained for histopathological, metabolomic, and protein expression analyses. RESULTS: HF-HSD (but not HFD) was associated with NASH and increased oxidative stress. These animals presented an inhibition of hepatic autophagy and alterations in AMP-activated protein kinase/mammalian target of rapamycin activity. We also observed that the ability of metabolic adaptation was adversely affected by the increase of damaged mitochondria. NASH development was associated with changes in adipose tissue dynamics and increased amounts of saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids in visceral adipose tissue. CONCLUSION: HF-HSD led to a metabolic blockage and impaired hepatic mitochondria turnover. In addition, the continuous accumulation of fatty acids produced adipose tissue dysfunction and hepatic fat accumulation that favored the progression to NASH.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/patologia , Animais , Autofagia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Gordura Intra-Abdominal/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Sci Rep ; 10(1): 11954, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686726

RESUMO

Chemokine (C-C motif) ligand 2 (CCL2) has been associated with chronic metabolic diseases. We aimed to investigate whether Ccl2 gene overexpression is involved in the regulation of signaling pathways in metabolic organs. Biochemical and histological analyses were used to explore tissue damage in cisgenic mice that overexpressed the Ccl2 gene. Metabolites from energy and one-carbon metabolism in liver and muscle extracts were measured by targeted metabolomics. Western blot analysis was used to explore the AMP-activated protein kinase (AMPK) and mammalian target of rapamycin pathways. Ccl2 overexpression resulted in steatosis, decreased AMPK activity and altered mitochondrial dynamics in the liver. These changes were associated with decreased oxidative phosphorylation and alterations in the citric acid cycle and transmethylation. In contrast, AMPK activity and its downstream mediators were increased in muscle, where we observed an increase in oxidative phosphorylation and increased concentrations of different metabolites associated with ATP synthesis. In conclusion, Ccl2 overexpression induces distinct metabolic alterations in the liver and muscle that affect mitochondrial dynamics and the regulation of energy sensors involved in cell homeostasis. These data suggest that CCL2 may be a therapeutic target in metabolic diseases.


Assuntos
Quimiocina CCL2/genética , Metabolismo Energético , Expressão Gênica , Fígado/metabolismo , Músculos/metabolismo , Animais , Autofagia , Biópsia , Quimiocina CCL2/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Modelos Biológicos , Especificidade de Órgãos , Fenótipo , Transdução de Sinais
7.
Aliment Pharmacol Ther ; 51(3): 374-387, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825539

RESUMO

BACKGROUND: Obesity can influence hepatic mitochondrial function, and cause non-alcoholic steatohepatitis (NASH). Diagnosis and follow-up rely on invasive liver biopsy so blood-based markers are urgently required. AIM: To investigate whether values of circulating metabolites from energy and one-carbon (1-C) metabolism may: (a) reflect hepatic mitochondrial flexibility failure and (b) act as NASH biomarkers. METHODS: Patients with severe obesity undergoing bariatric surgery (n = 270) were investigated using quantitative targeted plasma metabolomics. Comparisons were with non-obese controls without liver disease (n = 50). Obese patients with NASH (n = 53) and without NASH (n = 130) representing extreme groups of liver disease were assessed to test the diagnostic ability of the measured circulating metabolites. Paired liver biopsy and plasma samples from NASH patients were available 1 year post-surgery and were evaluated to monitor metabolomic changes with liver damage resolution. RESULTS: We identified correlations between human liver metabolism and obesity. High-plasma α-ketoglutarate (α-KG) and lactate concentrations in NASH patients indicating citric acid cycle replenishment via glutaminolysis might also be a crucial point in NASH onset. Plasma measurements of α-KG, ß-hydroxybutyrate, pyruvate and oxaloacetate reduced the uncertainty in clinical diagnosis of NASH [area under receiver operating characteristic curve (AUC) of 0.826] and predicted NASH resolution without ambiguity (AUC of 0.999). CONCLUSION: Changes in plasma mitochondrial metabolites appear to be associated with NASH. These metabolic responses may be dynamically remodelled following resolution of liver damage through massive weight loss.


Assuntos
Biomarcadores/sangue , Metaboloma , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade Mórbida/sangue , Obesidade Mórbida/complicações , Adulto , Cirurgia Bariátrica , Biomarcadores/metabolismo , Biópsia , Feminino , Humanos , Período Intraoperatório , Fígado/metabolismo , Fígado/patologia , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade Mórbida/cirurgia , Redução de Peso/fisiologia
8.
Antioxidants (Basel) ; 8(7)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295833

RESUMO

We investigated alterations in the levels of the antioxidant paraoxonase-1 (PON1) and the lipoprotein profile (analyzed by nuclear magnetic resonance) in patients with lung cancer (LC) or head and neck cancer (HNC), and the effects produced thereon by radiotherapy (RT). We included 33 patients with LC and 28 patients with HNC. Before irradiation, and one month after completion of RT, blood samples were obtained. The control group was composed of 50 healthy subjects. Patients had significantly lower serum PON1 activity and concentration before RT than the control group. PON1-related variables were good predictors of the presence of LC or HNC, with analytical sensitivities and specificities greater than 80%. Patients showed a significant increase in the number of particles of all subclasses of very-low-density lipoproteins (large, medium and small). However, these changes were not maintained when adjusted for age, sex, and other clinical and demographic variables. Irradiation was associated with a significant increase in PON1 concentration and, only in patients with HNC, with an increase in high-density lipoprotein-cholesterol concentration. Our results suggest that determinations of the levels of PON1-related variables may constitute good biomarkers for the evaluation of these diseases. Studies with a larger number of patients are needed to fully confirm this hypothesis.

9.
Metabolism ; 99: 81-89, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31279739

RESUMO

BACKGROUND & AIMS: Hepatic alterations, such as in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are frequently associated with obesity. To investigate the molecular mechanisms of these alterations and to identify molecules that could be used as potential therapeutic targets, we investigated the modulation of hepatic indices of oxidative stress and inflammation in obese patients undergoing laparoscopic sleeve gastrectomy (LSG). METHODS: Patients (n = 436) attending our obesity clinic underwent LSG for weight loss. We obtained a diagnostic intraoperative liver biopsy, and a sub-cohort (n = 120) agreed to a 1-year follow-up that included donation of blood samples and additional liver biopsies. Selected key molecules in blood and liver tissue were used to investigate the hepatic alterations in obesity, and their response to LSG. RESULTS: One year post-surgery, the prevalence of diabetes, dyslipidemia and hypertension decreased significantly. LSG improved liver histology features in all patients. Improvement was greater in severe cases of NAFLD including those with steatohepatitis, bridging fibrosis or cirrhosis. Significant pre-surgery differences in plasma, and liver markers of oxidative stress and inflammation (including chemokine C-C motif ligand 2, paraoxonase-1, galectin-3, and sonic hedgehog) were observed between patients with, and those without, NASH; post-surgery indicated consistent improvements in these parameters. CONCLUSION: Our study shows that the histology and liver function of patients with morbid obesity are significantly improved after LSG via mechanisms that involve the reduction of oxidative stress and inflammatory processes. These data encourage the use of LSG as a therapeutic option to improve, or resolve, NAFLD.


Assuntos
Gastrectomia/métodos , Inflamação/terapia , Hepatopatia Gordurosa não Alcoólica/cirurgia , Estresse Oxidativo , Adulto , Biomarcadores , Biópsia , Feminino , Humanos , Inflamação/cirurgia , Laparoscopia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia , Obesidade Mórbida/cirurgia , Resultado do Tratamento
10.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1555-1566, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905786

RESUMO

The risk of non-alcoholic fatty liver disease increases with obesity. Vulnerability to oxidative stress and/or inflammation represents a crucial step in non-alcoholic fatty liver disease progression through abnormal metabolic responses. In this study, we investigated the role of CCL2 gene ablation in mice that were double deficient in low density lipoprotein receptor and in paraoxonase-1. Mass spectrometry methods were used to assess the liver metabolic response in mice fed either regular chow or a high-fat diet. Dietary fat caused liver steatosis, oxidative stress and the accumulation of pro-inflammatory macrophages in the livers of double deficient mice. We observed alterations in energy metabolism-related pathways and in metabolites associated with the methionine cycle and the glutathione reduction pathway. This metabolic response was associated with impaired autophagy. Conversely, when we established CCL2 deficiency, histologic features of fatty liver disease were abrogated, hepatic liver oxidative stress decreased, and anti-inflammatory macrophage marker expression levels increased. These changes were associated with the normalization of metabolic disturbances and increased lysosome-associated membrane protein 2, expression, which suggests enhanced chaperone-mediated autophagy. This study demonstrates that CCL2 is a key molecule for the development of metabolic and histological alterations in the liver of mice sensitive to the development of hyperlipidemia and hepatic steatosis, a finding with potential to identify new therapeutic targets in liver diseases.


Assuntos
Arildialquilfosfatase/genética , Quimiocina CCL2/genética , Hiperlipidemias/genética , Lipoproteínas LDL/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Receptores de LDL/genética , Animais , Arildialquilfosfatase/deficiência , Autofagia/genética , Quimiocina CCL2/deficiência , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Regulação da Expressão Gênica , Glutationa/metabolismo , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Fígado/metabolismo , Fígado/patologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Metaboloma/genética , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo , Receptores de LDL/deficiência , Transdução de Sinais
11.
PLoS One ; 13(11): e0207474, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30444915

RESUMO

The aims of this study were to investigate changes in energy balance-associated metabolites associated with radiotherapy in patients with breast cancer, and to relate these changes to the clinical and pathological response-to-treatment. We studied 151 women with breast cancer who received radiotherapy following surgical excision of the tumor. Blood was obtained before and after the irradiation procedure. The control group was composed of 44 healthy women with a similar age distribution to that of the patients. We analyzed the concentrations of metabolites involved in glycolysis, citric acid cycle and amino acid metabolism using targeted quantitative metabolomics. Post-surgery, pre-radiotherapy, patients had major alterations in the serum concentrations of products of glycolysis, citric acid cycle and amino acid metabolism. The strongest alterations were decreases in serine, leucine and isoleucine concentrations. Alterations in metabolite levels were partially, or totally, reversed after irradiation; the concentrations of serine, leucine and isoleucine approached equivalence to those of the control group. Estrogen receptor-positive patients were those with lower concentrations, while triple negative patients had higher concentrations of these amino acids. The normalization of the amino acids serine, leucine and isoleucine concentrations could be clinically relevant because the normalization of these energy-balance metabolites would suggest that residual micro-metastatic disease had been effectively diminished by the radiotherapy, and may be an indicator of its efficacy.


Assuntos
Aminoácidos/metabolismo , Ciclo do Ácido Cítrico , Glicólise , Neoplasias de Mama Triplo Negativas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
12.
Breast ; 42: 142-149, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30296647

RESUMO

Alterations in the circulating levels of trace elements have been observed in breast cancer (BC) patients. However, the relationships between these alterations and the metabolic and clinical consequences of BC are unknown. The treatment-of-choice of BC is surgery followed by radiation therapy (RT). The present study was aimed at investigating: 1) the concentrations of several trace elements in BC patients, and their relationships with the intrinsic molecular subtypes of tumors; 2) the toxicological effect of RT. We studied 49 women with BC who were scheduled to receive RT following excision of the tumor. Plasma samples were obtained before and after the irradiation procedure. The control group was composed of 49 healthy women. Patients had significantly lower pre-RT concentrations of B, Cu, and Zn, and significantly higher concentrations of Sr than the control group. Irradiation was associated with a striking increase in plasma B concentrations, while Cu, Fe, Sr and Zn concentrations were not significantly different from pre-RT levels, albeit Sr and Zn showed non-significant trends towards increases. The plasma concentrations of B, Cu, Fe, Sr, and Zn were associated with the tumor expression of hormone receptors, epidermal growth factor receptor 2, Ki67 antigen, as well as dermatitis and asthenia, all of which represent the main toxicological responses to RT.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/metabolismo , Oligoelementos/sangue , Adulto , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Oligoelementos/metabolismo
13.
Aging Cell ; 17(4): e12772, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740925

RESUMO

Metformin, the first drug chosen to be tested in a clinical trial aimed to target the biology of aging per se, has been clinically exploited for decades in the absence of a complete understanding of its therapeutic targets or chemical determinants. We here outline a systematic chemoinformatics approach to computationally predict biomolecular targets of metformin. Using several structure- and ligand-based software tools and reference databases containing 1,300,000 chemical compounds and more than 9,000 binding sites protein cavities, we identified 41 putative metformin targets including several epigenetic modifiers such as the member of the H3K27me3-specific demethylase subfamily, KDM6A/UTX. AlphaScreen and AlphaLISA assays confirmed the ability of metformin to inhibit the demethylation activity of purified KDM6A/UTX enzyme. Structural studies revealed that metformin might occupy the same set of residues involved in H3K27me3 binding and demethylation within the catalytic pocket of KDM6A/UTX. Millimolar metformin augmented global levels of H3K27me3 in cultured cells, including reversion of global loss of H3K27me3 occurring in premature aging syndromes, irrespective of mitochondrial complex I or AMPK. Pharmacological doses of metformin in drinking water or intraperitoneal injection significantly elevated the global levels of H3K27me3 in the hepatic tissue of low-density lipoprotein receptor-deficient mice and in the tumor tissues of highly aggressive breast cancer xenograft-bearing mice. Moreover, nondiabetic breast cancer patients receiving oral metformin in addition to standard therapy presented an elevated level of circulating H3K27me3. Our biocomputational approach coupled to experimental validation reveals that metformin might directly regulate the biological machinery of aging by targeting core chromatin modifiers of the epigenome.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Metformina/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Animais , Biocatálise , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Feminino , Histona Desmetilases/metabolismo , Humanos , Ligantes , Metformina/química , Camundongos , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Proteínas Nucleares/metabolismo
14.
Arch Med Res ; 49(2): 119-122, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29699809

RESUMO

This study provides preliminary information on the usefulness of measuring serum paraoxonase-1 (PON1) concentration and activity (and other inflammatory markers) to predict tumor recurrence in patients with urinary bladder cancer. We studied a total of 39 hospitalized patients in whom the diagnosis of urinary bladder cancer was confirmed by transurethral resection. After five years of follow-up, 29 patients presented with tumor recurrence. As control subjects, we also studied 61 healthy subjects and a further 132 hospitalized patients who had a urinary catheter-related infection due to causes other than cancer. Results showed that urinary bladder patients had lower serum PON1 concentration and activity, and higher chemokine (C-C motif) ligand 2, C-reactive protein, and procalcitonin concentrations than the control individuals. Patients with tumor recurrence had significantly lower serum PON1 concentration than patients without tumor recurrence. The mean area under the curve of the receiver operating characteristics plot for serum PON1 concentration in discriminating patients with and those without tumor recurrence was 0.755 and the best combination of sensitivity and specificity was obtained at PON1 = 100 mg/L (0.72 and 0.80, respectively). Establishing this value as a cut-off, positive predictive value was = 0.91, and negative predictive value was = 0.50. These results suggest that the measurement of serum PON1 concentration may be a high-sensitivity marker of tumor recurrence in urinary bladder cancer patients.


Assuntos
Arildialquilfosfatase/sangue , Biomarcadores Tumorais/sangue , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/diagnóstico , Neoplasias da Bexiga Urinária/sangue , Neoplasias da Bexiga Urinária/diagnóstico , Proteína C-Reativa/análise , Quimiocinas C/sangue , Seguimentos , Humanos , Pró-Calcitonina/sangue , Curva ROC , Sensibilidade e Especificidade
15.
PLoS One ; 12(11): e0188633, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176871

RESUMO

Paraoxonase-1 (PON1) is an intra-cellular antioxidant enzyme found also in the circulation associated with high-density lipoproteins. The activity of this enzyme has been shown to be decreased in breast cancer (BC) patients. The aims of our study were to investigate the changes produced by radiotherapy (RT) on activity and concentration of serum PON1 in BC patients, and to evaluate the observed variations in relation to clinical and pathological characteristics of patients and tumors, and the response to treatment. We studied 200 women with BC who were scheduled to receive RT following excision of the tumor. Blood for analyses was obtained before and after the irradiation procedure. The control group was composed of 200 healthy women. Relative to control, BC patients had significantly lower serum PON1 activities pre-RT, while PON1 concentrations were at similar levels. RT was associated with a significant increase in serum PON1 activities and concentrations. We observed significant differences in serum PON1 concentrations post-RT between patients with luminal A or luminal B tumors. Serum PON1 concentration post-RT was markedly lower in BC patients with metastases. We conclude that benefit from RT accrues to the BC patients not only through its direct effect on cancer cells but also indirectly by improving the organism's anti-oxidant defense mechanisms. In addition, our preliminary evidence suggests that the measurement of serum PON1 concentration post-RT could be an efficient prognostic biomarker, and may be used as an index of the efficacy of the RT.


Assuntos
Arildialquilfosfatase/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Arildialquilfosfatase/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/cirurgia , Feminino , Frequência do Gene , Genótipo , Humanos , Modelos Lineares , Pessoa de Meia-Idade , Metástase Neoplásica , Curva ROC
16.
Nutrients ; 9(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208582

RESUMO

Metabolic vulnerability is associated with age-related diseases and concomitant co-morbidities, which include obesity, diabetes, atherosclerosis and cancer. Most of the health problems we face today come from excessive intake of nutrients and drugs mimicking dietary effects and dietary restriction are the most successful manipulations targeting age-related pathways. Phenotypic heterogeneity and individual response to metabolic stressors are closely related food intake. Understanding the complexity of the relationship between dietary provision and metabolic consequences in the long term might provide clinical strategies to improve healthspan. New aspects of metformin activity provide a link to many of the overlapping factors, especially the way in which organismal bioenergetics remodel one-carbon metabolism. Metformin not only inhibits mitochondrial complex 1, modulating the metabolic response to nutrient intake, but also alters one-carbon metabolic pathways. Here, we discuss findings on the mechanism(s) of action of metformin with the potential for therapeutic interpretations.


Assuntos
Carbono/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Dieta , Metabolismo Energético , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
17.
Curr Clin Pharmacol ; 11(4): 250-258, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27633039

RESUMO

Metformin is a biguanide used in the treatment of type 2 diabetes mellitus and obesity. The main mechanism of action is to decrease the intestinal glucose absorption and the hepatic glucose production, however, it does not influence insulin secretion. Metformin also increases the affinity of the insulin receptor, reduces high insulin levels and improves insulin resistance. Additionally, it promotes weight loss. Metformin is a pleiotropic compound but acts, largely, by activating 5 adenosine monophosphate (AMP)-activated protein kinase (AMPK). Data suggest that the therapeutic effects of this compound are mediated, at least in part, through an upregulation of paraoxonase-1 (PON1) synthesis. PON1 is a thiolactonase that degrades lipid peroxides, and downregulates the chemokine (C-C motif) ligand 2 (CCL2) which is a pro-inflammatory chemokine that stimulates the migration of monocytes to areas of inflammation where they differentiate into macrophages. However, the prescription of metformin in patients with liver disease is controversial since, in some cases, this drug causes worsening of liver function. Patients with chronic liver disease have decreased hepatic PON1 activity. A study in mice deficient in PON1 showed that in this experimental model, metformin administration increased the severity of steatosis, increased CCL2 expression, did not activate AMPK, and increased the expression of the apoptosis marker caspase-9. These results suggest that PON1 is essential for the successful activation of AMPK in the liver, and for metformin to demonstrate its therapeutic function.


Assuntos
Arildialquilfosfatase/metabolismo , Quimiocina CCL2/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Camundongos , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia
18.
Int J Mol Sci ; 16(5): 11323-38, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25993297

RESUMO

Oxidative damage to lipids and lipoproteins is implicated in the development of atherosclerotic vascular diseases, including peripheral artery disease (PAD). The paraoxonases (PON) are a group of antioxidant enzymes, termed PON1, PON2, and PON3 that protect lipoproteins and cells from peroxidation and, as such, may be involved in protection against the atherosclerosis process. PON1 inhibits the production of chemokine (C-C motif) ligand 2 (CCL2) in endothelial cells incubated with oxidized lipoproteins. PON1 and CCL2 are ubiquitously distributed in tissues, and this suggests a joint localization and combined systemic effect. The aim of the present study has been to analyze the quantitative immunohistochemical localization of PON1, PON3, CCL2 and CCL2 receptors in a series of patients with severe PAD. Portions of femoral and/or popliteal arteries from 66 patients with PAD were obtained during surgical procedures for infra-inguinal limb revascularization. We used eight normal arteries from donors as controls. PON1 and PON3, CCL2 and the chemokine-binding protein 2, and Duffy antigen/chemokine receptor, were increased in PAD patients. There were no significant changes in C-C chemokine receptor type 2. Our findings suggest that paraoxonases and chemokines play an important role in the development and progression of atherosclerosis in peripheral artery disease.


Assuntos
Arildialquilfosfatase/metabolismo , Quimiocinas/metabolismo , Doença Arterial Periférica/patologia , Adulto , Idoso , Quimiocina CCL2/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/metabolismo , Fumar
19.
Mediators Inflamm ; 2013: 135698, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533299

RESUMO

Obesity is not necessarily a predisposing factor for disease. It is the handling of fat and/or excessive energy intake that encompasses the linkage of inflammation, oxidation, and metabolism to the deleterious effects associated with the continuous excess of food ingestion. The roles of cytokines and insulin resistance in excessive energy intake have been studied extensively. Tobacco use and obesity accompanied by an unhealthy diet and physical inactivity are the main factors that underlie noncommunicable diseases. The implication is that the management of energy or food intake, which is the main role of mitochondria, is involved in the most common diseases. In this study, we highlight the importance of mitochondrial dysfunction in the mutual relationships between causative conditions. Mitochondria are highly dynamic organelles that fuse and divide in response to environmental stimuli, developmental status, and energy requirements. These organelles act to supply the cell with ATP and to synthesise key molecules in the processes of inflammation, oxidation, and metabolism. Therefore, energy sensors and management effectors are determinants in the course and development of diseases. Regulating mitochondrial function may require a multifaceted approach that includes drugs and plant-derived phenolic compounds with antioxidant and anti-inflammatory activities that improve mitochondrial biogenesis and act to modulate the AMPK/mTOR pathway.


Assuntos
Inflamação/fisiopatologia , Mitocôndrias/patologia , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Obesidade/complicações , Obesidade/imunologia , Fumar/efeitos adversos
20.
Cell Cycle ; 12(4): 555-78, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23370395

RESUMO

Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated ß-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.


Assuntos
Envelhecimento/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Iridoides/farmacologia , Longevidade/efeitos dos fármacos , Óleos de Plantas/química , Polifenóis/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Envelhecimento/genética , Animais , Transformação Celular Neoplásica/genética , Dieta Mediterrânea , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Hormese , Humanos , Iridoides/isolamento & purificação , Longevidade/genética , Azeite de Oliva , Polifenóis/isolamento & purificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA