Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(15): 5789-5805, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34129058

RESUMO

Integrin CD103 mediates the adhesion and tissue retention of T cells by binding to E-cadherin which is abundant on epithelial cells. Notably, CD103 is highly expressed on CD8 T cells but conspicuously absent on most CD4 T cells. The mechanism controlling such lineage-specific expression of CD103 remains unclear. Using a series of genetically engineered mouse models, here, we demonstrate that the regulatory mechanism of CD103 expression is distinct between CD4 and CD8 T cells, and that the transcription factor Runx3 plays an important but not an essential role in this process. We further found that the availability of integrin ß7 which heterodimerizes with CD103 was necessary but also constrained the surface expression of CD103. Notably, the forced surface expression of CD103 did not significantly alter the thymic development of conventional T cells but severely impaired the generation of MHC-II-restricted TCR transgenic T cells, revealing previously unappreciated aspects of CD103 in the selection and maturation of CD4 T cells. Unlike its effect on CD4 T cell development, however, CD103 overexpression did not significantly affect CD4 T cells in peripheral tissues. Moreover, the frequency and number of CD4 T cells in the small intestine epithelium did not increase even though E-cadherin is highly expressed in this tissue. Collectively, these results suggest that most mature CD4 T cells are refractory to the effects of CD103 expression, and that they presumably utilize CD103-independent pathways to control their tissue retention and residency.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Cadeias alfa de Integrinas/metabolismo , Animais , Caderinas/metabolismo , Feminino , Cadeias beta de Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
2.
Nat Immunol ; 15(7): 638-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880459

RESUMO

Lineage fate in the thymus is determined by mutually exclusive expression of the transcription factors ThPOK and Runx3, with ThPOK imposing the CD4(+) lineage fate and Runx3 promoting the CD8(+) lineage fate. While it is known that cytokine signals induce thymocytes to express Runx3, it is not known how ThPOK prevents thymocytes from expressing Runx3 and adopting the CD8(+) lineage fate, nor is it understood why ThPOK itself imposes the CD4(+) lineage fate on thymocytes. We now report that genes encoding members of the SOCS (suppressor of cytokine signaling) family are critical targets of ThPOK and that their induction by ThPOK represses Runx3 expression and promotes the CD4(+) lineage fate. Thus, induction of SOCS-encoding genes is the main mechanism by which ThPOK imposes the CD4(+) lineage fate in the thymus.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Linhagem da Célula , Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Transcrição/fisiologia , Animais , Linfócitos T CD8-Positivos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
3.
Cytokine ; 64(2): 532-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23988623

RESUMO

T cell homeostasis and survival is dependent on interleukin-7 (IL-7). Immune activation, however, downregulates IL-7 receptor expression on T cells so that T cell survival during activation must be maintained independently of IL-7. The pro-inflammatory cytokine IL-6 shares common signaling pathways with IL-7 and can promote T cell survival in vitro. But whether IL-6 promotes T cell survival and homeostasis in vivo is not clear. Notably, IL-6 overexpression results in massive plasmacytosis and autoimmunity so that an IL-6 effect on in vivo T cell survival has remained untested. To overcome this limitation, here we generated IL-6 transgenic mice on an immunoglobulin heavy chain (IgH) deficient background which rendered them B cell deficient. Notably, such IgH(KO)IL6(Tg) mice were free of any signs of inflammation or autoimmunity and remained healthy throughout the course of analysis. In these mice, we found that IL-6 overexpression significantly increased peripheral T cell numbers, but importantly without increasing thymopoiesis. Moreover, IL-6 signaled T cells maintained their naïve phenotype and did not express activation/memory markers, suggesting that increased T cell numbers were due to increased T cell survival and not because of expansion of activated T cells. Mechanistically, we found that IL-6 signaling induced expression of pro-survival factors Mcl-1 and Pim-1/-2 but not Bcl-2. Thus, IL-6 is a T cell homeostatic cytokine that expands T cell space and can maintain the naïve T cell pool.


Assuntos
Homeostase/imunologia , Interleucina-6/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Ciclo Celular/imunologia , Proliferação de Células , Sobrevivência Celular/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Longevidade/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Timócitos/citologia , Timócitos/imunologia
4.
Blood ; 122(14): 2358-68, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23908463

RESUMO

The zinc-finger protein Ikaros is a key player in T-cell development and a potent tumor suppressor in thymocytes. To understand the molecular basis of its function, we disabled Ikaros activity in vivo using a dominant negative Ikaros transgene (DN-IkTg). In DN-IkTg mice, T-cell development was severely suppressed, and positively selected thymocytes clonally expanded, resulting in a small thymus with a heavily skewed T-cell receptor (TCR) repertoire. Notably, DN-IkTg induced vigorous proliferation concomitant to downregulation of antiapoptotic factor expression such as Bcl2. Ikaros activity was required during positive selection, and specifically at the CD4(+)CD8(lo) intermediate stage of thymocyte differentiation, where it prevented persistent TCR signals from inducing aberrant proliferation and expansion. In particular, DN-IkTg induced the accumulation of CD4 single-positive (SP) thymocytes with a developmentally transitional phenotype, and it imposed a developmental arrest accompanied by massive apoptosis. Thus, we identified an in vivo requirement for Ikaros function, which is to suppress the proliferative potential of persistent TCR signals and to promote the survival and differentiation of positively selected thymocytes.


Assuntos
Diferenciação Celular/imunologia , Fator de Transcrição Ikaros/imunologia , Fator de Transcrição Ikaros/metabolismo , Linfócitos T/citologia , Timo/citologia , Animais , Diferenciação Celular/genética , Citometria de Fluxo , Humanos , Fator de Transcrição Ikaros/genética , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo
5.
Eur J Immunol ; 43(9): 2283-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23712827

RESUMO

γ-Chain (γc) cytokine receptor signaling is required for the development of all lymphocytes. Why γc signaling plays such an essential role is not fully understood, but induction of the serine/threonine kinase Pim1 is considered a major downstream event of γc as Pim1 prevents apoptosis and increases metabolic activity. Consequently, we asked whether Pim1 overexpression would suffice to restore lymphocyte development in γc-deficient mice. By analyzing Pim1-transgenic γc-deficient mice (Pim1(Tg) γc(KO) ), we show that Pim1 promoted T-cell development and survival in the absence of γc. Interestingly, such effects were largely limited to CD4(+) lineage αß T cells as CD4(+) T-cell numbers improved to near normal levels but CD8(+) T cells remained severely lymphopenic. Notably, Pim1 over-expression failed to promote development and survival of any T-lineage cells other than αß T cells, as we observed complete lack of γδ, NKT, FoxP3(+) T regulatory cells and TCR-ß(+) CD8αα IELs in Pim1(Tg) γc(KO) mice. Collectively, these results uncover distinct requirements for γc signaling between CD4(+) αß T cells and all other T-lineage cells, and they identify Pim1 as a novel effector molecule sufficient to drive CD4(+) αß T-cell development and survival in the absence of γc cytokine receptor signaling.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Quimiocinas C/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Receptores de Citocinas/metabolismo , Animais , Antígenos CD8/biossíntese , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Quimiocinas C/deficiência , Fatores de Transcrição Forkhead/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais , Proteínas Proto-Oncogênicas c-pim-1/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Linfócitos T Reguladores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA