Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265145

RESUMO

The evolutionarily conserved apical Crumbs (CRB) complex, consisting of the core components CRB3a (an isoform of CRB3), PALS1 and PATJ, plays a key role in epithelial cell-cell contact formation and cell polarization. Recently, we observed that deletion of one Pals1 allele in mice results in functional haploinsufficiency characterized by renal cysts. Here, to address the role of PALS1 at the cellular level, we generated CRISPR/Cas9-mediated PALS1-knockout MDCKII cell lines. The loss of PALS1 resulted in increased paracellular permeability, indicating an epithelial barrier defect. This defect was associated with a redistribution of several tight junction-associated proteins from bicellular to tricellular contacts. PALS1-dependent localization of tight junction proteins at bicellular junctions required its interaction with PATJ. Importantly, reestablishment of the tight junction belt upon transient F-actin depolymerization or upon Ca2+ removal was strongly delayed in PALS1-deficient cells. Additionally, the cytoskeleton regulator RhoA was redistributed from junctions into the cytosol under PALS1 knockout. Together, our data uncover a critical role of PALS1 in the coupling of tight junction proteins to the F-actin cytoskeleton, which ensures their correct distribution along bicellular junctions and the formation of tight epithelial barrier.


Assuntos
Células Epiteliais , Proteínas de Membrana , Núcleosídeo-Fosfato Quinase , Proteínas de Junções Íntimas , Animais , Camundongos , Citoesqueleto de Actina , Actinas , Citoesqueleto , Citosol , Núcleosídeo-Fosfato Quinase/genética , Proteínas de Membrana/genética
2.
Blood ; 141(9): 1023-1035, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35981498

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is often overexpressed or constitutively activated by internal tandem duplication (ITD) and tyrosine kinase domain (TKD) mutations in acute myeloid leukemia (AML). Despite the use of receptor tyrosine kinase inhibitors (TKI) in FLT3-ITD-positive AML, the prognosis of patients is still poor, and further improvement of therapy is required. Targeting FLT3 independent of mutations by antibody-drug conjugates (ADCs) is a promising strategy for AML therapy. Here, we report the development and preclinical characterization of a novel FLT3-targeting ADC, 20D9-ADC, which was generated by applying the innovative P5 conjugation technology. In vitro, 20D9-ADC mediated potent cytotoxicity to Ba/F3 cells expressing transgenic FLT3 or FLT3-ITD, to AML cell lines, and to FLT3-ITD-positive patient-derived xenograft AML cells. In vivo, 20D9-ADC treatment led to a significant tumor reduction and even durable complete remission in AML xenograft models. Furthermore, 20D9-ADC demonstrated no severe hematotoxicity in in vitro colony formation assays using concentrations that were cytotoxic in AML cell line treatment. The combination of 20D9-ADC with the TKI midostaurin showed strong synergy in vitro and in vivo, leading to reduction of aggressive AML cells below the detection limit. Our data indicate that targeting FLT3 with an advanced new-generation ADC is a promising and potent antileukemic strategy, especially when combined with FLT3-TKI in FLT3-ITD-positive AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação
3.
Nucleic Acids Res ; 50(9): 5047-5063, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489064

RESUMO

Telomeres, the ends of linear chromosomes, are composed of repetitive DNA sequences, histones and a protein complex called shelterin. How DNA is packaged at telomeres is an outstanding question in the field with significant implications for human health and disease. Here, we studied the architecture of telomeres and their spatial association with other chromatin domains in different cell types using correlative light and electron microscopy. To this end, the shelterin protein TRF1 or TRF2 was fused in tandem to eGFP and the peroxidase APEX2, which provided a selective and electron-dense label to interrogate telomere organization by transmission electron microscopy, electron tomography and scanning electron microscopy. Together, our work reveals, for the first time, ultrastructural insight into telomere architecture. We show that telomeres are composed of a dense and highly compacted mesh of chromatin fibres. In addition, we identify marked differences in telomere size, shape and chromatin compaction between cancer and non-cancer cells and show that telomeres are in direct contact with other heterochromatin regions. Our work resolves the internal architecture of telomeres with unprecedented resolution and advances our understanding of how telomeres are organized in situ.


Assuntos
Telômero/ultraestrutura , Humanos , Microscopia Eletrônica , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
4.
FEBS J ; 288(24): 7073-7095, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33448150

RESUMO

Cell polarity is a fundamental property of most animal cells and is critical during development and for most cell and tissue functions. Epithelial cells are organized into apical and basolateral compartments, and this intrinsic cellular asymmetry is essential for all functions that are carried out by epithelial tissue. The establishment of a polarized epithelial phenotype is orchestrated by major rearrangements of the cell cytoskeleton, polarized membrane trafficking, the formation and maturation of epithelial cell junctions, cell signaling pathways, and the generation of cortical phospholipid asymmetry. These processes need to be coordinated precisely in time and space and integrated with physical and chemical signals from the environment, failure of which leads to severe developmental disorders and various human diseases. At the heart of this regulatory network are the evolutionarily conserved polarity modules Par, Crumbs, and Scribble, whose components engage in complex cooperative and antagonistic interactions to compartmentalize and functionalize the epithelial cell cortex and to control the spatiotemporal activity of downstream polarity effectors. In this review, we will discuss recent insights into the organization and regulation of the mammalian Par and Crumbs modules and outline a hypothetical framework of how these proteins orchestrate epithelial polarity development, HIPPO signaling, and actomyosin activity at the apical-lateral border.


Assuntos
Células Epiteliais/metabolismo , Animais , Polaridade Celular , Células Epiteliais/citologia , Humanos
5.
STAR Protoc ; 1(2): 100074, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33111110

RESUMO

The peroxidase APEX2 has been used widely for proximity biotinylation and subsequent proteomics analyses. However, the poor membrane permeability of the biotin phenol substrate and the inhibitory effect of peroxide on the enzyme's activity has hampered proximity labeling in certain cell culture systems and tissues. Here, we describe an APEX2 protocol that uses alternative peroxide and biotin phenol concentrations. The protocol permits robust proximity biotinylation in confluent epithelial cell cultures and may be applicable to other cell cultures and tissues. For complete details on the use and execution of this protocol, please refer to Tan et al. (2020).


Assuntos
Biotinilação/métodos , Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Peroxidase/metabolismo , Animais , Cães , Células Madin Darby de Rim Canino
6.
Curr Biol ; 30(14): 2791-2804.e6, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32531288

RESUMO

Epithelial apico-basal polarity is established through the asymmetric cortical distribution of the Par, Crumbs and Scribble polarity modules. Apical (Par and Crumbs) and basolateral (Scribble) polarity modules overlap at the apical-lateral border, which, in mammals, is defined by the apical junctional complex (AJC). The AJC is composed of tight junctions (TJ) and adherens junctions (AJ) and plays fundamental roles in epithelial morphogenesis and plasticity. However, the molecular composition and precise sub-junctional organization of the AJC and its associated polarity regulators are not well defined. Here, we used the peroxidase APEX2 for quantitative proximity proteomics (QPP) and electron microscopy (EM) imaging to dissect the architecture of the AJC in fully polarized MDCK-II cells. We present a high-confidence proteome of the apical-lateral border in which TJ and AJ components and apical and lateral compartment markers are spatially resolved. We further demonstrate that the Crumbs complex (Pals1, PatJ, Lin7c, and Crumbs3) defines a hitherto unidentified membrane compartment apical of TJ, which we coin the vertebrate marginal zone (VMZ). QPP, imaging, and immunoprecipitation assays showed that the HOMER scaffolding proteins, PKN2 and PTPN13, and the membrane-proximal HIPPO pathway proteins ARHGAP29 and STXBP4 are recruited to the VMZ via the PDZ domains of PatJ. Taken together, our work defines the spatial and molecular organization of the apical-lateral border in mammalian epithelial cells, reveals an intriguing molecular and spatial conservation of invertebrate and vertebrate cell polarity protein domains, and identifies a VMZ-associated protein network implicated in HIPPO signaling and the control of the cortical actin cytoskeleton.


Assuntos
Polaridade Celular/genética , Células Epiteliais/citologia , Proteínas de Membrana/fisiologia , Junções Íntimas , Actinas/metabolismo , Animais , Citoesqueleto/metabolismo , Cães , Células Madin Darby de Rim Canino , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Nat Commun ; 8(1): 1575, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146919

RESUMO

The 'acidic patch' is a highly electronegative cleft on the histone H2A-H2B dimer in the nucleosome. It is a fundamental motif for protein binding and chromatin dynamics, but the cellular impact of targeting this potentially therapeutic site with exogenous molecules remains unclear. Here, we characterize a family of binuclear ruthenium compounds that selectively target the nucleosome acidic patch, generating intra-nucleosomal H2A-H2B cross-links as well as inter-nucleosomal cross-links. In contrast to cisplatin or the progenitor RAPTA-C anticancer drugs, the binuclear agents neither arrest specific cell cycle phases nor elicit DNA damage response, but rather induce an irreversible, anomalous state of condensed chromatin that ultimately results in apoptosis. In vitro, the compounds induce misfolding of chromatin fibre and block the binding of the regulator of chromatin condensation 1 (RCC1) acidic patch-binding protein. This family of chromatin-modifying molecules has potential for applications in drug development and as tools for chromatin research.


Assuntos
Apoptose/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Nucleossomos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Cristalografia por Raios X , DNA/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA