Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 71: 103068, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38377790

RESUMO

Following ingestion of fruits, vegetables and derived products, (poly)phenols that are not absorbed in the upper gastrointestinal tract pass to the colon, where they undergo microbiota-mediated ring fission resulting in the production of a diversity of low molecular weight phenolic catabolites, which appear in the circulatory system and are excreted in urine along with their phase II metabolites. There is increasing interest in these catabolites because of their potential bioactivity and their use as biomarkers of (poly)phenol intake. Investigating the fate of dietary (poly)phenolics in the colon has become confounded as a result of the recent realisation that many of the phenolics appearing in biofluids can also be derived from the aromatic amino acids, l-phenylalanine and l-tyrosine, and to a lesser extent catecholamines, in reactions that can be catalysed by both colonic microbiota and endogenous mammalian enzymes. The available evidence, albeit currently rather limited, indicates that substantial amounts of phenolic catabolites originate from phenylalanine and tyrosine, while somewhat smaller quantities are produced from dietary (poly)phenols. This review outlines information on this topic and assesses procedures that can be used to help distinguish between phenolics originating from dietary (poly)phenols, the two aromatic amino acids and catecholamines.


Assuntos
Fenóis , Tirosina , Animais , Fenilalanina , Dieta , Aminoácidos Aromáticos , Polifenóis , Mamíferos/metabolismo
2.
Nat Commun ; 14(1): 6332, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816716

RESUMO

Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Reposicionamento de Medicamentos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Combinação de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Linhagem Celular Tumoral
3.
Food Funct ; 14(11): 5023-5031, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37194921

RESUMO

Onion (Allium cepa L.) and its newly derived product "black onion" are characterised by the presence of compounds with potential bioactivity, particularly organosulfur compounds (OSCs). However, little is known about the metabolism, distribution, and excretion of these compounds as they pass through the gastrointestinal tract. This study monitored healthy subjects after an acute intake of black onion and analysed the excretion of OSCs using UHPLC-HRMS. A total of 31 OSCs were detected in urine after the acute ingestion of black onion, the main components being S-methyl-L-cysteine sulfoxide (methiin) (13.6 ± 3.9 µmol), isoalliin (12.4 ± 4.7 µmol) and S-propyl-L-cysteine (deoxypropiin) (3.1 ± 0.7 µmol). Moreover, N-acetylated metabolites of the major OSCs detected in black onion, namely, N-acetyl-S-(1-propenyl)-L-cysteine sulfoxide (NAS1PCS) and N-acetyl-S-(1-propenyl)-L-cysteine (NAS1PC), were found in urine after black onion consumption. The N-acetylation reaction takes place in the kidneys and liver, and metabolism pathways are proposed to explain the excretion of OSCs in urine. The basis of the identification of OSCs as urinary metabolites after black onion consumption is described for the first time and provides the basis for further research.


Assuntos
Cisteína , Cebolas , Humanos , Compostos de Enxofre , Sulfóxidos/metabolismo , Ingestão de Alimentos
4.
Antioxidants (Basel) ; 12(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37107300

RESUMO

The consumption of black garlic has been related to a decreased risk of many human diseases due to the presence of phytochemicals such as organosulfur compounds (OSCs). However, information on the metabolization of these compounds in humans is limited. By means of ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), this study aims to determine the OSCs and their metabolites excreted in urine 24 h after an acute intake of 20 g of black garlic by healthy humans. Thirty-three OSCs were identified and quantified, methiin (17,954 ± 6040 nmol), isoalliin (15,001 ± 9241 nmol), S-(2-carboxypropyl)-L-cysteine (8804 ± 7220 nmol) and S-propyl-L-cysteine (deoxypropiin) (7035 ± 1392 nmol) being the main ones. Also detected were the metabolites N-acetyl-S-allyl-L-cysteine (NASAC), N-acetyl-S-allyl-L-cysteine sulfoxide (NASACS) and N-acetyl-S-(2-carboxypropyl)-L-cysteine (NACPC), derived from S-allyl-L-cysteine (SAC), alliin and S-(2-carboxypropyl)-L-cysteine, respectively. These compounds are potentially N-acetylated in the liver and kidney. The total excretion of OSCs 24 h after the ingestion of black garlic was 64,312 ± 26,584 nmol. A tentative metabolic pathway has been proposed for OSCs in humans.

5.
Food Funct ; 13(9): 4861-4874, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35419577

RESUMO

Red-fleshed apple cultivars with an enhanced content of anthocyanins have recently attracted the interest of apple producers and consumers due to their attractive color and promising added health benefits. In this paper, we provide the first comprehensive overview of new hybrid red-fleshed apples, mainly focusing on their (poly)phenolic composition, the effect of processing, the (poly)phenolic bioavailability and the biological effects. Evidence so far from in vitro and in vivo studies supports their added beneficial effects compared to common apples on health outcomes such as cancer, cardiovascular disease, inflammation and immune function, which are mainly related to their specific (poly)phenol composition.


Assuntos
Malus , Antocianinas/farmacologia , Disponibilidade Biológica , Frutas , Fenol , Fenóis/farmacologia , Extratos Vegetais
6.
Food Chem ; 367: 130620, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343812

RESUMO

Artichokes are a rich source of (poly)phenols, mainly caffeoylquinic acids, but little is known about their bioavailability from this source. This study investigated the absorption, metabolism and excretion of (poly)phenols after sous-vide artichoke consumption (5776 µmol of (poly)phenols) by healthy volunteers. Seventy-six (poly)phenol metabolites were identified by UHPLC-MS/MS using authentic standards, including acyl-quinic acids plus C6-C3, C6-C1, C6-C2, C6-C1-N, C6-C0 metabolites, and their phase-II conjugates. The major metabolites were 3'-methoxy-4'-hydroxycinnamic acid, 3'-methoxycinnamic acid-4'-sulfate, and 4'-hydroxycinnamic acid-3'-sulfate, which appeared early in plasma (Tmax < 4 h); plus 3-(3'-methoxy-4'-hydroxyphenyl)propanoic acid, 3-(4'-methoxyphenyl)propanoic acid-3'-glucuronide, 3-(3'-hydroxyphenyl) propanoic acid and hippuric acids, which appeared later (Tmax > 6 h). The 24 h urinary recovery averaged 8.9% (molar basis) of the (poly)phenols consumed. Hepatic beta-oxidation of 3',4'-dihydroxycinnamic acid and methylated conjugates occurred, but was limited (<0.04%). 3'-Methylation exceeded 4'-methylation and interindividual variability was high, especially for gut microbial metabolites (up to 168-fold).


Assuntos
Cynara scolymus , Disponibilidade Biológica , Humanos , Metaboloma , Fenóis , Polifenóis , Espectrometria de Massas em Tandem
7.
Food Funct ; 12(5): 1996-2011, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33537693

RESUMO

The aim of this study was to evaluate the bioaccessibility of (poly)phenolic compounds in Tudela artichokes (Cynara scolymus cv. Blanca de Tudela) after an in vitro gastrointestinal digestion and the effect of the human colonic microbiota. A total of 28 (poly)phenolic compounds were identified and quantified by LC-MS/MS in raw, boiled, sous vide and microwaved Tudela artichokes. Out of these, sixteen were phenolic acids, specifically caffeoylquinic acids (CQAs) and other minor hydroxycinnamic acid derivatives, ten flavonoids belonging to the family of flavones (apigenin and luteolin derivatives) and two lignans (pinoresinol derivatives). Sous vide and microwaving caused mainly transesterification reactions of CQAs but maintained or even augmented the total (poly)phenolic contents of artichokes, while boiling decreased (poly)phenolic compounds by 25% due to leaching into the boiling water. Heat treatment exerted a positive effect on the bioaccessibility of (poly)phenols after gastrointestinal digestion. In raw artichokes, only 1.6% of the total (poly)phenolic compounds remained bioaccessible after gastrointestinal digestion, while in artichoke samples cooked by sous vide, boiled and microwaved, the percentage of bioaccessibility was 60.38%, 59.93% and 39,03% respectively. After fecal fermentation, 20 native (poly)phenolic compounds and 11 newly formed catabolites were quantified. 48 h of fecal fermentation showed that native (poly)phenols are readily degraded by colonic microbiota during the first 2 h of incubation. The colonic degradation of artichoke (poly)phenols follows a major pathway that involves the formation of caffeic acid, dihydrocaffeic acid, 3-(3'-hydroxyphenyl)propionic acid, 3-phenylpropionic acid and phenylacetic acid, with 3-phenylpropionic acid being the most abundant end product. The catabolic pathways for colonic microbial degradation of artichoke CQAs are proposed.


Assuntos
Cynara scolymus/química , Digestão , Microbioma Gastrointestinal/fisiologia , Temperatura Alta , Polifenóis/metabolismo , Polifenóis/farmacocinética , Bactérias/metabolismo , Disponibilidade Biológica , Colo/microbiologia , Culinária/métodos , Ácidos Cumáricos/análise , Fezes/microbiologia , Fermentação , Flavonoides/análise , Humanos , Lignanas/análise , Polifenóis/análise , Ácido Quínico/análogos & derivados , Ácido Quínico/análise
8.
J Agric Food Chem ; 69(1): 537-554, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372779

RESUMO

Many studies have associated the consumption of (poly)phenol-rich diets with health benefits. However, accurate high-throughput quantitative methods for estimating exposure covering a broad spectrum of (poly)phenols are lacking. We have developed and validated a high-throughput method for the simultaneous quantification of 119 (poly)phenol metabolites in plasma and urine using ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry, with a very fast sample treatment and a single run time of 16 min. This method is highly sensitive, precise, accurate, and shows good linearity for all compounds (R2 > 0.992). This novel method will allow a quantitative assessment of habitual (poly)phenol intake in large epidemiological studies as well as clinical studies investigating the health benefits of dietary (poly)phenols.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Polifenóis/sangue , Polifenóis/urina , Espectrometria de Massas em Tandem/métodos , Humanos , Plasma/química , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Urina/química
9.
Free Radic Biol Med ; 160: 784-795, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927016

RESUMO

The health benefits of orange juice (OJ) consumption are attributed in part to the circulating flavanone phase II metabolites and their microbial-derived ring fission phenolic catabolites. The present study investigated these compounds in the bloodstream after acute intake of 500 mL of OJ. Plasma samples obtained at 0, 1, 2, 3, 4, 5, 6, 7, 8 and 24 h after OJ intake were analysed by HPLC-HR-MS. Eleven flavanone metabolites and 36 phenolic catabolites were identified and quantified in plasma. The main metabolites were hesperetin-3'-sulfate with a peak plasma concentration (Cmax) of 80 nmol/L, followed by hesperetin-7-glucuronide (Cmax 24 nmol/L), hesperetin-3'-glucuronide (Cmax 18 nmol/L) and naringenin-7-glucuronide (Cmax 21 nmol/L). Among the main phenolic catabolites to increase in plasma after OJ consumption were 3'-methoxycinnamic acid-4'-sulfate (Cmax 19 nmol/L), 3-hydroxy-3-(3'-hydroxy-4'-methoxyphenyl)propanoic acid (Cmax 20 nmol/L), 3-(3'-hydroxy-4'-methoxyphenyl)propanoic acid (Cmax 19 nmol/L), 3-(4'-hydroxyphenyl)propanoic acid (Cmax 25 nmol/L), and 3-(phenyl)propanoic acid (Cmax 19 nmol/L), as well as substantial amounts of phenylacetic and hippuric acids. The comprehensive plasma pharmacokinetic profiles that were obtained are of value to the design of future ex vivo cell studies, aimed at elucidating the mechanisms underlying the potential health benefits of OJ consumption. CLINICAL TRIAL REGISTRATION NUMBER: This trial was registered at clinicaltrials.gov as NCT02627547.


Assuntos
Citrus sinensis , Ingestão de Alimentos , Sucos de Frutas e Vegetais , Humanos , Masculino , Fenol , Fenóis
10.
Eur J Nutr ; 58(4): 1529-1543, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29616322

RESUMO

PURPOSE: There is much information on the bioavailability of (poly)phenolic compounds following acute intake of various foods. However, there are only limited data on the effects of repeated and combined exposure to specific (poly)phenol food sources and the inter-individual variability in their bioavailability. This study evaluated the combined urinary excretion of (poly)phenols from green tea and coffee following daily consumption by healthy subjects in free-living conditions. The inter-individual variability in the production of phenolic metabolites was also investigated. METHODS: Eleven participants consumed both tablets of green tea and green coffee bean extracts daily for 8 weeks and 24-h urine was collected on five different occasions. The urinary profile of phenolic metabolites and a set of multivariate statistical tests were used to investigate the putative existence of characteristic metabotypes in the production of flavan-3-ol microbial metabolites. RESULTS: (Poly)phenolic compounds in the green tea and green coffee bean extracts were absorbed and excreted after simultaneous consumption, with green tea resulting in more inter-individual variability in urinary excretion of phenolic metabolites. Three metabotypes in the production of flavan-3-ol microbial metabolites were tentatively defined, characterized by the excretion of different amounts of trihydroxyphenyl-γ-valerolactones, dihydroxyphenyl-γ-valerolactones, and hydroxyphenylpropionic acids. CONCLUSIONS: The selective production of microbiota-derived metabolites from flavan-3-ols and the putative existence of characteristic metabotypes in their production represent an important development in the study of the bioavailability of plant bioactives. These observations will contribute to better understand the health effects and individual differences associated with consumption of flavan-3-ols, arguably the main class of flavonoids in the human diet.


Assuntos
Café/metabolismo , Colo/metabolismo , Flavonoides/urina , Polifenóis/urina , Chá/metabolismo , Adolescente , Adulto , Disponibilidade Biológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Mol Nutr Food Res ; 62(23): e1800623, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30328671

RESUMO

SCOPE: The application of dried blood spot (DBS) cards for the study in human blood of dietary polyphenol bioavailability has been poorly studied. METHODS AND RESULTS: An analytical method based on blood sampling with DBS cards combined with LC-MS/MS has been developed and validated. To test the method validation, the phenolic metabolites are determined in human blood and plasma obtained after an acute intake of a red-fleshed apple snack in ten volunteers. Capillary blood by finger prick is compared to venous blood by venipuncture and whole blood is also compared to their corresponding venous plasma samples. Moreover, the venous plasma results using DBS cards are compared to those obtained by microElution solid phase extraction (µSPE). The main phenolic metabolites detected in blood and plasma samples are phloretin glucuronide, dihydroxyphenylpropionic acid sulphate, (methyl) catechol sulphate, catechol glucuronide, and hydroxyphenyl-γ-valerolactone glucuronide. No significant differences are observed between capillary blood, venous blood, and plasma samples using DBS, and neither between plasma samples analyzed by DBS or µSPE. CONCLUSIONS: Finger-prick blood sampling based on DBS appears to be a suitable alternative to the classic invasive venipuncture for the determination of circulating phenolic metabolites in nutritional postprandial studies.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Frutas , Malus , Fenóis/sangue , Adulto , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Limite de Detecção , Masculino , Malus/química , Pessoa de Meia-Idade , Fenóis/metabolismo , Flebotomia/métodos , Extração em Fase Sólida , Solventes/química , Espectrometria de Massas em Tandem
12.
Am J Clin Nutr ; 106(3): 791-800, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28747329

RESUMO

Background: Physical exercise has been reported to increase the bioavailability of citrus flavanones.Objective: We investigated the bioavailability of orange juice (OJ) (poly)phenols in endurance-trained males before and after cessation of training for 7 d.Design: Ten fit, endurance-trained males, with a mean ± SD maximal oxygen consumption of 58.2 ± 5.3 mL · kg-1 · min-1, followed a low (poly)phenol diet for 2 d before drinking 500 mL of OJ containing 398 µmol of (poly)phenols, of which 330 µmol was flavanones. After the volunteers stopped training for 7 d the feeding study was repeated. Urine samples were collected 12 h pre- and 24 h post-OJ consumption. Bioavailability was assessed by the quantitative analysis of urinary flavanone metabolites and (poly)phenol catabolites with the use of high-pressure liquid chromatography-high resolution mass spectrometry.Results: During training, 0-24-h urinary excretion of flavanone metabolites, mainly hesperetin-3'-O-glucuronide, hesperetin-3'-sulfate, naringenin-4'-O-glucuronide, naringenin-7-O-glucuronide, was equivalent to 4.2% of OJ flavanone intake. This increased significantly to 5.2% when OJ was consumed after the volunteers stopped training for 7 d. Overall, this trend, although not significant, was also observed with OJ-derived colonic catabolites, which, after supplementation in the trained state, were excreted in amounts equivalent to 51% of intake compared with 59% after cessation of training. However, urinary excretion of 3 colonic catabolites of bacterial origin, most notably, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, did increase significantly when OJ was consumed postcessation compared with precessation of training. Data were also obtained on interindividual variations in flavanone bioavailability.Conclusions: A 7-d cessation of endurance training enhanced, rather than reduced, the bioavailability of OJ flavanones. The biological significance of these differences and whether they extend to the bioavailability of other dietary (poly)phenols remain to be determined. Hesperetin-3'-O-glucuronide and the colonic microbiota-derived catabolite 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid are key biomarkers of the consumption of hesperetin-O-glycoside-containing OJ and other citrus products. This trial was registered at clinicaltrials.gov as NCT02627547.


Assuntos
Citrus sinensis/química , Exercício Físico/fisiologia , Flavanonas/farmacocinética , Resistência Física/fisiologia , Extratos Vegetais/farmacocinética , Polifenóis/farmacocinética , Descanso/fisiologia , Atletas , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Colo/metabolismo , Dieta , Flavanonas/urina , Frutas , Sucos de Frutas e Vegetais , Glucuronídeos/urina , Hesperidina/farmacocinética , Humanos , Masculino , Espectrometria de Massas , Consumo de Oxigênio , Polifenóis/urina , Esportes/fisiologia
13.
J Agric Food Chem ; 65(31): 6477-6487, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27790915

RESUMO

Beneficial properties attributed to the intake of fruit and red wine have been associated with the presence of significant amounts of anthocyanins. However, their low absorption and consequent accumulation in the gut have generated the suspicion that colonic metabolites of anthocyanins are probably involved in these protective effects. Grape pomace and strawberry extracts, rich in malvidin- and pelargonidin-glucoside, respectively, were fermented in vitro using human feces as microbial inoculum. After 8 h of anaerobic incubation, the anthocyanins were almost completely degraded, whereas their microbial metabolite concentrations were highest at 24 h. Syringic acid and tyrosol were the main metabolites of grape and strawberry extracts, respectively. On the basis of the metabolites detected, metabolic pathways of malvidin- and pelargonidin-glucosides were proposed. Anthocyanin-rich grape and strawberry extracts and their generated metabolites such as hydroxyphenylacetic acid showed apoptotic effects in HT-29 colon cancer cells and may suggest their possible contribution as anticarcinogenic agents.


Assuntos
Antocianinas/metabolismo , Apoptose/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/fisiopatologia , Fragaria/metabolismo , Extratos Vegetais/metabolismo , Vitis/metabolismo , Antocianinas/farmacologia , Fragaria/química , Frutas/química , Frutas/metabolismo , Células HT29 , Humanos , Extratos Vegetais/farmacologia , Vitis/química
14.
J Agric Food Chem ; 64(28): 5724-35, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27339035

RESUMO

Orange juice is a rich source of (poly)phenols, in particular, the flavanones hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside. Following the acute consumption of 500 mL of orange juice containing 398 µmol of (poly)phenols by 12 volunteers, 0-24 h plasma and urine samples were analyzed by targeted high-performance liquid chromatography-high-resolution mass spectrometry in order to identify flavanone metabolites and phenolic acid and aromatic catabolites. A total of 19 flavanone metabolites-comprising di-O-glucuronide, O-glucuronide, O-glucuronyl-sulfate, and sulfate derivatives of hesperetin, naringenin, and eriodictyol-and 65 microbial-derived phenolic catabolites, such as phenylpropanoid, phenylpropionic, phenylacetic, benzoic, and hydroxycarboxylic acids and benzenetriol and benzoylglycine derivatives, including free phenolics and phase II sulfate, glucuronide, and methyl metabolites, were identified or partially identified in plasma and/or urine samples. The data obtained provide a detailed evaluation of the fate of orange juice (poly)phenols as they pass through the gastrointestinal tract and are absorbed into the circulatory system prior to renal excretion. Potential pathways for these conversions are proposed.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Citrus sinensis/metabolismo , Sucos de Frutas e Vegetais/análise , Espectrometria de Massas/métodos , Polifenóis/sangue , Polifenóis/urina , Adulto , Humanos , Masculino , Polifenóis/metabolismo
15.
Food Chem ; 197(Pt A): 466-73, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26616976

RESUMO

The impact of cooking heat treatments (frying in olive oil, frying in sunflower oil and griddled) on the antioxidant capacity and (poly)phenolic compounds of onion, green pepper and cardoon, was evaluated. The main compounds were quercetin and isorhamnetin derivates in onion, quercetin and luteolin derivates in green pepper samples, and chlorogenic acids in cardoon. All heat treatments tended to increase the concentration of phenolic compounds in vegetables suggesting a thermal destruction of cell walls and sub cellular compartments during the cooking process that favor the release of these compounds. This increase, specially that observed for chlorogenic acids, was significantly correlated with an increase in the antioxidant capacity measured by DPPH (r=0.70). Griddled vegetables, because of the higher temperature applied during treatment in comparison with frying processes, showed the highest amounts of phenolic compounds with increments of 57.35%, 25.55% and 203.06% compared to raw onion, pepper and cardoon, respectively.


Assuntos
Antioxidantes/análise , Temperatura Alta , Polifenóis/análise , Verduras/química , Capsicum/química , Ácido Clorogênico/análise , Culinária , Cynara/química , Luteolina/análise , Cebolas/química , Óleos de Plantas , Quercetina/análogos & derivados , Quercetina/análise , Óleo de Girassol
16.
Food Funct ; 5(8): 1695-717, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24671262

RESUMO

This review provides details on the phytochemicals in green coffee beans and the changes that occur during roasting. Key compounds in the coffee beverage, produced from the ground, roasted beans, are volatile constituents responsible for the unique aroma, the alkaloids caffeine and trigonelline, chlorogenic acids, the diterpenes cafestol and kahweol, and melanoidins, which are Maillard reaction products. The fate of these compounds in the body following consumption of coffee is discussed along with evidence of the mechanisms by which they may impact on health. Finally, epidemiological findings linking coffee consumption to potential health benefits including prevention of several chronic and degenerative diseases, such as cancer, cardiovascular disorders, diabetes, and Parkinson's disease, are evaluated.


Assuntos
Café/química , Alcaloides/análise , Animais , Antioxidantes/análise , Cafeína/análise , Doenças Cardiovasculares/prevenção & controle , Ácido Clorogênico/análise , Diabetes Mellitus Tipo 2/prevenção & controle , Modelos Animais de Doenças , Diterpenos/análise , Humanos , Reação de Maillard , Metanálise como Assunto , Neoplasias/prevenção & controle , Doença de Parkinson/prevenção & controle , Polímeros/análise
17.
Biofactors ; 39(6): 623-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23904092

RESUMO

Several studies have indicated potential health benefits associated with coffee consumption. These benefits might be ascribed in part to the chlorogenic acids (CGAs), the main (poly)phenols in coffee. The impact of these dietary (poly)phenols on health depends on their bioavailability. As they pass along the gastrointestinal tract, CGAs are metabolized extensively and it is their metabolites rather than the parent compounds that predominate in the circulatory system. This article reports on a study in which after incubation of espresso coffee with human fecal samples, high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to monitor CGA breakdown and identify and quantify the catabolites produced by the colonic microflora. The CGAs were rapidly degraded by the colonic microflora and over the 6-h incubation period, 11 catabolites were identified and quantified. The appearance of the initial degradation products, caffeic and ferulic acids, was transient, with maximum quantities at 1 h. Dihydrocaffeic acid, dihydroferulic acid, and 3-(3'-hydroxyphenyl)propionic acid were the major end products, comprising 75-83% of the total catabolites, whereas the remaining 17-25% consisted of six minor catabolites. The rate and extent of the degradation showed a clear influence of the composition of the gut microbiota of individual volunteers. Pathways involved in colonic catabolism of CGAs are proposed and comparison with studies on the bioavailability of coffee CGAs ingested by humans helped distinguish between colonic catabolites and phase II metabolites of CGAs.


Assuntos
Ácido Clorogênico/metabolismo , Colo/microbiologia , Microbiota , Extratos Vegetais/metabolismo , Adulto , Ácidos Cafeicos/isolamento & purificação , Ácidos Cafeicos/metabolismo , Ácido Clorogênico/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Coffea/química , Café/química , Fezes/microbiologia , Feminino , Fermentação , Humanos , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA