Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Mol Cancer ; 22(1): 107, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422628

RESUMO

BACKGROUND: Acute leukemias represent deadly malignancies that require better treatment. As a challenge, treatment is counteracted by a microenvironment protecting dormant leukemia stem cells. METHODS: To identify responsible surface proteins, we performed deep proteome profiling on minute numbers of dormant patient-derived xenograft (PDX) leukemia stem cells isolated from mice. Candidates were functionally screened by establishing a comprehensive CRISPR‒Cas9 pipeline in PDX models in vivo. RESULTS: A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) was identified as an essential vulnerability required for the survival and growth of different types of acute leukemias in vivo, and reconstitution assays in PDX models confirmed the relevance of its sheddase activity. Of translational importance, molecular or pharmacological targeting of ADAM10 reduced PDX leukemia burden, cell homing to the murine bone marrow and stem cell frequency, and increased leukemia response to conventional chemotherapy in vivo. CONCLUSIONS: These findings identify ADAM10 as an attractive therapeutic target for the future treatment of acute leukemias.


Assuntos
Leucemia , Proteômica , Humanos , Camundongos , Animais , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Sistemas CRISPR-Cas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Leucemia/genética , Modelos Animais de Doenças , Microambiente Tumoral , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo
3.
Blood ; 139(5): 690-703, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34657154

RESUMO

The cellular mechanisms required to ensure homeostasis of the hematopoietic niche and the ability of this niche to support hematopoiesis upon stress remain elusive. We here identify Wnt5a in Osterix+ mesenchymal progenitor and stem cells (MSPCs) as a critical factor for niche-dependent hematopoiesis. Mice lacking Wnt5a in MSPCs suffer from stress-related bone marrow (BM) failure and increased mortality. Niche cells devoid of Wnt5a show defective actin stress fiber orientation due to an elevated activity of the small GTPase CDC42. This results in incorrect positioning of autophagosomes and lysosomes, thus reducing autophagy and increasing oxidative stress. In MSPCs from patients from BM failure states which share features of peripheral cytopenia and hypocellular BM, we find similar defects in actin stress fiber orientation, reduced and incorrect colocalization of autophagosomes and lysosomes, and CDC42 activation. Strikingly, a short pharmacological intervention to attenuate elevated CDC42 activation in vivo in mice prevents defective actin-anchored autophagy in MSPCs, salvages hematopoiesis and protects against lethal cytopenia upon stress. In summary, our study identifies Wnt5a as a restriction factor for niche homeostasis by affecting CDC42-regulated actin stress-fiber orientation and autophagy upon stress. Our data further imply a critical role for autophagy in MSPCs for adequate support of hematopoiesis by the niche upon stress and in human diseases characterized by peripheral cytopenias and hypocellular BM.


Assuntos
Autofagia , Transtornos da Insuficiência da Medula Óssea/metabolismo , Hematopoese , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo , Proteína Wnt-5a/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA