Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Cell Commun Signal ; 22(1): 281, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773618

RESUMO

BACKGROUND: Restoring impaired peripheral immune tolerance is the primary challenge in treating autoimmune diseases. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs), a fraction of low molecular weight proteins, in inhibiting the progression of psoriatic arthritis, even in the presence of high levels of the proinflammatory cytokine TNFα in the bloodstream. When specifically targeting dendritic cells (DCs), SSPs transform them into tolerogenic cells, which efficiently induce the development of regulatory Foxp3+ Treg cells. In this study, we provide further insights into the mechanism of action of SSPs. RESULTS: We found that SSPs stimulate the activation of the mTOR signaling pathway in dendritic cells, albeit in a different manner than the classical immunogenic stimulus LPS. While LPS-induced activation is rapid, strong, and sustained, the activity induced by SSPs is delayed, less intense, yet still significant. These distinct patterns of activation, as measured by phosphorylation of key components of the pathway are also observed in response to other immunogenic and tolerogenic stimuli such as GM-CSF + IL-4 or IL-10 and TGFß. The disparity in mTOR activation between immunogenic and tolerogenic stimuli is quantitative rather than qualitative. In both cases, mTOR activation primarily occurs through the PI3K/Akt signaling axis and involves ERK and GSK3ß kinases, with minimal involvement of AMPK or NF-kB pathways. Furthermore, in the case of SSPs, mTOR activation seems to involve adenosine receptors. Additionally, we observed that DCs treated with SSPs exhibit an energy metabolism with high plasticity, which is typical of tolerogenic cells rather than immunogenic cells. CONCLUSION: Hence, the decision whether dendritic cells enter an inflammatory or tolerogenic state seems to rely on varying activation thresholds and kinetics of the mTOR signaling pathway.


Assuntos
Células Dendríticas , Tolerância Imunológica , Transdução de Sinais , Serina-Treonina Quinases TOR , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Camundongos , Inflamação/metabolismo , Cinética , Lipopolissacarídeos/farmacologia
2.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672485

RESUMO

Restoring peripheral immune tolerance is crucial for addressing autoimmune diseases. An ancient mechanism in maintaining the balance between inflammation and tolerance is the ratio of extracellular ATP (exATP) and adenosine. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs) in inhibiting psoriatic arthritis progression, even in the presence of the pro-inflammatory cytokine TNFα, by transforming dendritic cells (DCs) into tolerogenic cells and fostering regulatory Foxp3+ Treg cells. Here, we identified thymosins as the primary constituents of SSPs, but recombinant thymosin peptides were less efficient in inhibiting arthritis than SSPs. Since Tß4 is an ecto-ATPase-binding protein, we hypothesized that SSPs regulate exATP profiles. Real-time investigation of exATP levels in DCs revealed that tolerogenic stimulation led to robust de novo exATP synthesis followed by significant degradation, while immunogenic stimulation resulted in a less pronounced increase in exATP and less effective degradation. These contrasting exATP profiles were crucial in determining whether DCs entered an inflammatory or tolerogenic state, highlighting the significance of SSPs as natural regulators of peripheral immunological tolerance, with potential therapeutic benefits for autoimmune diseases. Finally, we demonstrated that the tolerogenic phenotype of SSPs is mainly influenced by adenosine receptors, and in vivo administration of SSPs inhibits psoriatic skin inflammation.


Assuntos
Trifosfato de Adenosina , Diferenciação Celular , Células Dendríticas , Baço , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Baço/citologia , Baço/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Camundongos , Timosina/farmacologia , Timosina/metabolismo , Peptídeos/farmacologia , Artrite Psoriásica/tratamento farmacológico , Artrite Psoriásica/metabolismo , Artrite Psoriásica/imunologia , Humanos , Camundongos Endogâmicos C57BL , Tolerância Imunológica/efeitos dos fármacos
3.
Mol Ther Oncolytics ; 31: 100741, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38020062

RESUMO

Low pathogenic influenza A viruses (IAVs) have shown promising oncolytic potential in lung cancer-bearing mice. However, as replication-competent pathogens, they may cause side effects in immunocompromised cancer patients. To circumvent this problem, we genetically engineered nonreplicating IAVs lacking the hemagglutinin (HA) gene (ΔHA IAVs), but reconstituted the viral envelope with recombinant HA proteins to allow a single infection cycle. To optimize the therapeutic potential and improve immunomodulatory properties, these replication-incompetent IAVs were complemented with a murine interferon-gamma (mIFN-γ) gene. After intratracheal administration to transgenic mice that develop non-small cell lung cancer (NSCLC), the ΔHA IAVs induced potent tumor destruction. However, ΔHA IAVs armed with mIFN-γ exhibited an even stronger and more sustained effect, achieving 85% tumor reduction at day 12 postinfection. In addition, ΔHA-mIFN-γ viruses were proven to be efficient in recruiting and activating natural killer cells and macrophages from the periphery and in inducing cytotoxic T lymphocytes. Most important, both viruses, and particularly IFN-γ-encoding viruses, activated tumor-associated alveolar macrophages toward a proinflammatory M1-like phenotype. Therefore, replication-incompetent ΔHA-mIFN-γ-IAVs are safe and efficient oncolytic viruses that additionally exhibit immune cell activating properties and thus represent a promising innovative therapeutic option in the fight against NSCLC.

4.
Cell Mol Life Sci ; 79(1): 65, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013790

RESUMO

Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Fenamatos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Adulto , Animais , COVID-19/metabolismo , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
5.
Viruses ; 13(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696497

RESUMO

Respiratory viruses are known to be the most frequent causative mediators of lung infections in humans, bearing significant impact on the host cell signaling machinery due to their host-dependency for efficient replication. Certain cellular functions are actively induced by respiratory viruses for their own benefit. This includes metabolic pathways such as glycolysis, fatty acid synthesis (FAS) and the tricarboxylic acid (TCA) cycle, among others, which are modified during viral infections. Here, we summarize the current knowledge of metabolic pathway modifications mediated by the acute respiratory viruses respiratory syncytial virus (RSV), rhinovirus (RV), influenza virus (IV), parainfluenza virus (PIV), coronavirus (CoV) and adenovirus (AdV), and highlight potential targets and compounds for therapeutic approaches.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Ácidos Graxos/biossíntese , Glicólise/fisiologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Adenoviridae/metabolismo , Coronavirus/metabolismo , Humanos , Orthomyxoviridae/metabolismo , Vírus da Parainfluenza 1 Humana/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Rhinovirus/metabolismo
6.
Cancers (Basel) ; 13(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638227

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has emerged as an attractive strategy for cancer immunotherapy. Despite remarkable success for hematological malignancies, excessive activity and poor control of CAR T cells can result in severe adverse events requiring control strategies to improve safety. This work illustrates the feasibility of a zinc finger-based inducible switch system for transcriptional regulation of an anti-CD20 CAR in primary T cells providing small molecule-inducible control over therapeutic functions. We demonstrate time- and dose-dependent induction of anti-CD20 CAR expression and function with metabolites of the clinically-approved drug tamoxifen, and the absence of background CAR activity in the non-induced state. Inducible CAR T cells executed fine-tuned cytolytic activity against target cells both in vitro and in vivo, whereas CAR-related functions were lost upon drug discontinuation. This zinc finger-based transcriptional control system can be extended to other therapeutically important CARs, thus paving the way for safer cellular therapies.

7.
Pharmaceutics ; 13(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34575474

RESUMO

The ongoing SARS-CoV-2 pandemic requires efficient and safe antiviral treatment strategies. Drug repurposing represents a fast and low-cost approach to the development of new medical treatment options. The direct antiviral agent remdesivir has been reported to exert antiviral activity against SARS-CoV-2. Whereas remdesivir only has a very short half-life time and a bioactivation, which relies on pro-drug activating enzymes, its plasma metabolite GS-441524 can be activated through various kinases including the adenosine kinase (ADK) that is moderately expressed in all tissues. The pharmacokinetics of GS-441524 argue for a suitable antiviral drug that can be given to patients with COVID-19. Here, we analyzed the antiviral property of a combined treatment with the remdesivir metabolite GS-441524 and the antidepressant fluoxetine in a polarized Calu-3 cell culture model against SARS-CoV-2. The combined treatment with GS-441524 and fluoxetine were well-tolerated and displayed synergistic antiviral effects against three circulating SARS-CoV-2 variants in vitro in the commonly used reference models for drug interaction. Thus, combinatory treatment with the virus-targeting GS-441524 and the host-directed drug fluoxetine might offer a suitable therapeutic treatment option for SARS-CoV-2 infections.

8.
Arch Public Health ; 79(1): 144, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399834

RESUMO

BACKGROUND: This study aimed to explore which measures and risk factors for a COVID - 19 infection are considered most important in the general population, health experts and policymakers and to assess the level of agreement across the groups from Austria and Germany. METHODS: A two-phased survey was conducted, participants were matched according to age and gender. Three different groups were asked which measures they considered most relevant in reducing a COVID-19 transmission, to determine which factors contribute most to the risk of disease, and to evaluate the level of agreement in the assessment of risk factor relevance for (a) the transmission of the disease and (b) the risk of a severe course of COVID-19. RESULTS: Risk factors for an infection that were selected from all three groups were immunosuppression/deficiency, cancer, chronic lung disease, smoking, age and working as a health care professional. Interrater agreement per population was only poor to slight and results were highly heterogeneous. CONCLUSIONS: Our survey shows a broad spectrum of opinions and the associated general uncertainty about the risk factors for infection and a severe course of disease across the groups. Profound knowledge of politicians and experts is of high relevance to provide the public with valid information to ensure cooperation fighting the pandemic. TRIAL REGISTRATION: https://apps.who.int/trialsearch/ (ID: DRKS00022166). Registered 15 June 2020.

9.
Br J Pharmacol ; 178(11): 2339-2350, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33825201

RESUMO

BACKGROUND AND PURPOSE: The SARS-COV-2 pandemic and the global spread of coronavirus disease 2019 (COVID-19) urgently call for efficient and safe antiviral treatment strategies. A straightforward approach to speed up drug development at lower costs is drug repurposing. Here, we investigated the therapeutic potential of targeting the interface of SARS CoV-2 with the host via repurposing of clinically licensed drugs and evaluated their use in combinatory treatments with virus- and host-directed drugs in vitro. EXPERIMENTAL APPROACH: We tested the antiviral potential of the antifungal itraconazole and the antidepressant fluoxetine on the production of infectious SARS-CoV-2 particles in the polarized Calu-3 cell culture model and evaluated the added benefit of a combinatory use of these host-directed drugs with the direct acting antiviral remdesivir, an inhibitor of viral RNA polymerase. KEY RESULTS: Drug treatments were well-tolerated and potently impaired viral replication. Importantly, both itraconazole-remdesivir and fluoxetine-remdesivir combinations inhibited the production of infectious SARS-CoV-2 particles > 90% and displayed synergistic effects, as determined in commonly used reference models for drug interaction. CONCLUSION AND IMPLICATIONS: Itraconazole-remdesivir and fluoxetine-remdesivir combinations are promising starting points for therapeutic options to control SARS-CoV-2 infection and severe progression of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Hepatite C Crônica , Preparações Farmacêuticas , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Antivirais/uso terapêutico , Fluoxetina/farmacologia , Hepatite C Crônica/tratamento farmacológico , Humanos , Itraconazol/farmacologia , SARS-CoV-2
10.
Oncoimmunology ; 10(1): 1885778, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33643696

RESUMO

Non-small cell lung cancers (NSCLCs) establish a highly immunosuppressive tumor microenvironment supporting cancer growth. To interfere with cancer-mediated immunosuppression, selective immune-checkpoint inhibitors (ICIs) have been approved as a standard-of-care treatment for NSCLCs. However, the majority of patients poorly respond to ICI-based immunotherapies. Oncolytic viruses are amongst the many promising immunomodulatory treatments tested as standalone therapy or in combination with ICIs to improve therapeutic outcome. Previously, we demonstrated the oncolytic and immunomodulatory efficacy of low-pathogenic influenza Aviruses (IAVs) against NSCLCs in immunocompetent transgenic mice with alung-specific overexpression of active Raf kinase (Raf-BxB). IAV infection not only resulted in significant primary virus-induced oncolysis, but also caused afunctional reversion of tumor-associated macrophages (TAMs) comprising additional anti-cancer activity. Here we show that NSCLCs as well as TAMs and cytotoxic immune cells overexpress IC molecules of the PD-L2/PD-1 and B7-H3 signaling axes. Thus, we aimed to combine oncolytic IAV-infection with ICIs to exploit the benefits of both anti-cancer approaches. Strikingly, IAV infection combined with the novel B7-H3 ICI led to increased levels of M1-polarized alveolar macrophages and increased lung infiltration by cytotoxic Tlymphocytes, which finally resulted in significantly improved oncolysis of about 80% of existing tumors. In contrast, application of clinically approved α-PD-1 IC antibodies alone or in combination with oncolytic IAV did not provide additional oncolytic or immunomodulatory efficacy. Thus, individualized therapy with synergistically acting oncolytic IAV and B7-H3 ICI might be an innovative future approach to target NSCLCs that are resistant to approved ICIs in patients.


Assuntos
Influenza Humana , Neoplasias Pulmonares , Vírus Oncolíticos , Orthomyxoviridae , Animais , Humanos , Inibidores de Checkpoint Imunológico , Pulmão , Neoplasias Pulmonares/terapia , Camundongos , Vírus Oncolíticos/genética , Microambiente Tumoral
11.
Pharmacol Res ; 163: 105292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171305

RESUMO

Resolution failure of exacerbated inflammation triggered by Influenza A virus (IAV) prevents return of pulmonary homeostasis and survival, especially when associated with secondary pneumococcal infection. Therapeutic strategies based on pro-resolving molecules have great potential against acute inflammatory diseases. Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator that acts on its Mas receptor (MasR) to promote resolution of inflammation. We investigated the effects of Ang-(1-7) and the role of MasR in the context of primary IAV infection and secondary pneumococcal infection and evaluated pulmonary inflammation, virus titers and bacteria counts, and pulmonary damage. Therapeutic treatment with Ang-(1-7) decreased neutrophil recruitment, lung injury, viral load and morbidity after a primary IAV infection. Ang-(1-7) induced apoptosis of neutrophils and efferocytosis of these cells by alveolar macrophages, but had no direct effect on IAV replication in vitro. MasR-deficient (MasR-/-) mice were highly susceptible to IAV infection, displaying uncontrolled inflammation, increased viral load and greater lethality rate, as compared to WT animals. Ang-(1-7) was not protective in MasR-/- mice. Interestingly, Ang-(1-7) given during a sublethal dose of IAV infection greatly reduced morbidity associated with a subsequent S. pneumoniae infection, as seen by decrease in the magnitude of neutrophil influx, number of bacteria in the blood leading to a lower lethality. Altogether, these results show that Ang-(1-7) is highly protective against severe primary IAV infection and protects against secondary bacterial infection of the lung. These effects are MasR-dependent. Mediators of resolution of inflammation, such as Ang-(1-7), should be considered for the treatment of pulmonary viral infections.


Assuntos
Angiotensina I/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Proteínas Proto-Oncogênicas/imunologia , Receptores Acoplados a Proteínas G/imunologia , Células A549 , Angiotensina I/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Cães , Humanos , Vírus da Influenza A , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fragmentos de Peptídeos/farmacologia , Peroxidase/imunologia , Fagocitose/efeitos dos fármacos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Streptococcus pneumoniae
12.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096707

RESUMO

Influenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs. In this work, two semisynthetic derivatives of digitoxigenin, namely C10 (3ß-((N-(2-hydroxyethyl)aminoacetyl)amino-3-deoxydigitoxigenin) and C11 (3ß-(hydroxyacetyl)amino-3-deoxydigitoxigenin), showed anti-influenza A virus activity by affecting the expression of viral proteins at the early and late stages of replication cycle, and altering the transcription and synthesis of new viral proteins, thereby inhibiting the formation of new virions. Such antiviral action occurred due to the interference in the assembly of viral polymerase, resulting in an impaired polymerase activity and, therefore, reducing viral replication. Confirming the in vitro results, a clinically relevant ex vivo model of influenza virus infection of human tumor-free lung tissues corroborated the potential of these compounds, especially C10, to completely abrogate influenza A virus replication at the highest concentration tested (2.0 µM). Taken together, these promising results demonstrated that C10 and C11 can be considered as potential new anti-influenza drug candidates.


Assuntos
Antivirais/farmacologia , Cardenolídeos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Antivirais/química , Cardenolídeos/química , Humanos , Conformação Molecular , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 117(28): 16557-16566, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601201

RESUMO

Influenza viruses (IV) exploit a variety of signaling pathways. Previous studies showed that the rapidly accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway is functionally linked to nuclear export of viral ribonucleoprotein (vRNP) complexes, suggesting that vRNP export is a signaling-induced event. However, the underlying mechanism remained completely enigmatic. Here we have dissected the unknown molecular steps of signaling-driven vRNP export. We identified kinases RSK1/2 as downstream targets of virus-activated ERK signaling. While RSK2 displays an antiviral role, we demonstrate a virus-supportive function of RSK1, migrating to the nucleus to phosphorylate nucleoprotein (NP), the major constituent of vRNPs. This drives association with viral matrix protein 1 (M1) at the chromatin, important for vRNP export. Inhibition or knockdown of MEK, ERK or RSK1 caused impaired vRNP export and reduced progeny virus titers. This work not only expedites the development of anti-influenza strategies, but in addition demonstrates converse actions of different RSK isoforms.


Assuntos
Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Ribonucleoproteínas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Sistema de Sinalização das MAP Quinases , Sinais de Exportação Nuclear , Ribonucleoproteínas/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
14.
PLoS One ; 15(5): e0233052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413095

RESUMO

Severe influenza virus (IV) infections still represent a major challenge to public health. To combat IV infections, vaccines and antiviral compounds are available. However, vaccine efficacies vary with very limited to no protection against newly emerging zoonotic IV introductions. In addition, the development of resistant virus variants against currently available antivirals can be rapidly detected, in consequence demanding the design of novel antiviral strategies. Virus supportive cellular signaling cascades, such as the NF-κB pathway, have been identified to be promising antiviral targets against IV in in vitro and in vivo studies and clinical trials. While administration of NF-κB pathway inhibiting agents, such as LASAG results in decreased IV replication, it remained unclear whether blocking of NF-κB might sensitize cells to secondary bacterial infections, which often come along with viral infections. Thus, we examined IV and Staphylococcus aureus growth during LASAG treatment. Interestingly, our data reveal that the presence of LASAG during superinfection still leads to reduced IV titers. Furthermore, the inhibition of the NF-κB pathway resulted in decreased intracellular Staphylococcus aureus loads within epithelial cells, indicating a dependency on the pathway for bacterial uptake. Unfortunately, so far it is not entirely clear if this phenomenon might be a drawback in bacterial clearance during infection.


Assuntos
Antivirais/efeitos adversos , Aspirina/análogos & derivados , Infecções Bacterianas/etiologia , Glicina/efeitos adversos , Influenza Humana/tratamento farmacológico , Lisina/análogos & derivados , NF-kappa B/antagonistas & inibidores , Células A549 , Aspirina/efeitos adversos , Combinação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Técnicas de Silenciamento de Genes , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/complicações , Influenza Humana/virologia , Lisina/efeitos adversos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Infecções Estafilocócicas/etiologia , Superinfecção/etiologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Replicação Viral/efeitos dos fármacos
15.
J Pathol ; 251(4): 388-399, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449525

RESUMO

Recently, we established a doxycycline-inducible human tumor necrosis factor alpha (TNFα)-transgenic mouse line, ihTNFtg. Non-induced young and elderly mice showed low but constitutive expression of hTNFα due to promoter leakiness. The persistently present hTNFα stimulated endogenous pro-inflammatory mouse mS100A8/A9 alarmins. Secreted mS100A8/A9 in turn induced the expression and release of mouse mTNFα. The continuous upregulation of pro-inflammatory mTNFα and mS100A8/A9 proteins, due to their mutual expression dependency, gradually led to increased levels in colon tissue and blood. This finally exceeded the threshold levels tolerated by the healthy organism, leading to the onset of intestinal inflammation. Here, recombinant hTNFα functioned as an initial trigger for the development of chronic inflammation. Crossing ihTNFtg mice with S100A9KO mice lacking active S100A8/A9 alarmins or with Rag1KO mice lacking T and B lymphocytes completely abrogated the development of colonic inflammation, despite the still leaky hTNFα promoter. Furthermore, both the intensity of the immune response and the strength of immunosuppressive Treg induction was found to depend on the major histocompatibility complex (MHC) genetic composition. In summary, the onset of intestinal inflammation in elderly mice depends on at least four factors that have to be present simultaneously: TNFα upregulation, S100A8/A9 protein expression, functional T lymphocytes and genetic composition, with the MHC haplotype being of central importance. Only joint action of these factors leads to chronic intestinal inflammation, while absence of any of these determinants abrogates the development of the autoimmune disorder. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Colite/genética , Inflamação/genética , Complexo Principal de Histocompatibilidade/genética , Fator de Necrose Tumoral alfa/metabolismo , Alarminas/genética , Alarminas/metabolismo , Animais , Células da Medula Óssea , Calgranulina A/genética , Calgranulina B/genética , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Haplótipos , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
16.
Mol Ther Oncolytics ; 17: 190-204, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32346609

RESUMO

Recently, we showed that infection of primary lung tumor-bearing mice with oncolytic influenza A viruses (IAVs) led to strong virus-induced tumor cell lysis but also to restoration of immune competence of innate immune cells. Murine B16-F10 melanoma cells are known for their high lung tropism and progressive growth. As these cells are also highly permissive for IAVs, we analyzed their oncolytic and immunomodulatory efficiency against pulmonary B16-F10 lung metastases in vivo. IAV infection abrogated the melanoma-mediated immune suppression in the lung and induced a more than 50% cancer cell lysis. The oncolytic effect reached maximal efficacy 3 days post-infection, but it was not sustained over time. In order to maintain the virus-induced anti-tumor effect, mice with melanoma-derived lung cancers were treated in addition to influenza virus infection with an immune checkpoint inhibitor against programmed death-1 receptor (PD-1). The combined IAV and immune checkpoint inhibition (ICI) therapy resulted in a sustained anti-tumor efficacy, keeping the lung melanoma mass at day 12 of IAV infection still reduced by 50% over the control mice. In conclusion, ICI treatment strongly enhanced the oncolytic effect of influenza virus infection, suggesting that combined treatment is a promising approach against metastatic pulmonary melanoma.

17.
FASEB J ; 33(11): 12188-12199, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31398292

RESUMO

Pattern recognition receptors (PRRs) are key elements in the innate immune response. Formyl peptide receptor (FPR) 2 is a PRR that, in addition to proinflammatory, pathogen-derived compounds, also recognizes the anti-inflammatory endogenous ligand annexin A1 (AnxA1). Because the contribution of this signaling axis in viral infections is undefined, we investigated AnxA1-mediated FPR2 activation on influenza A virus (IAV) infection in the murine model. AnxA1-treated mice displayed significantly attenuated pathology upon a subsequent IAV infection with significantly improved survival, impaired viral replication in the respiratory tract, and less severe lung damage. The AnxA1-mediated protection against IAV infection was not caused by priming of the type I IFN response but was associated with an increase in the number of alveolar macrophages (AMs) and enhanced pulmonary expression of the AM-regulating cytokine granulocyte-M-CSF (GM-CSF). Both AnxA1-mediated increase in AM levels and GM-CSF production were abrogated when mouse (m)FPR2 signaling was antagonized but remained up-regulated in mice genetically deleted for mFPR1, an mFPR2 isoform also serving as AnxA1 receptor. Our results indicate a novel protective function of the AnxA1-FPR2 signaling axis in IAV pathology via GM-CSF-associated maintenance of AMs, expanding knowledge on the potential use of proresolving mediators in host defense against pathogens.-Schloer, S., Hübel, N., Masemann, D., Pajonczyk, D., Brunotte, L., Ehrhardt, C., Brandenburg, L.-O., Ludwig, S., Gerke, V., Rescher, U. The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model.


Assuntos
Anexina A1/fisiologia , Vírus da Influenza A/fisiologia , Macrófagos Alveolares/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Receptores de Formil Peptídeo/fisiologia , Replicação Viral , Animais , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Vírus da Influenza A/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
18.
Cell Commun Signal ; 17(1): 78, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319869

RESUMO

BACKGROUND: The airway epithelium is a major target tissue in respiratory infections, and its antiviral response is mainly orchestrated by the interferon regulatory factor-3 (IRF3), which subsequently induces type I (ß) and III (λ) interferon (IFN) signalling. Dual specificity mitogen-activated protein kinase kinase (MEK) pathway contributes to epithelial defence, but its role in the regulation of IFN response in human primary airway epithelial cells (AECs) is not fully understood. Here, we studied the impact of a small-molecule inhibitor (MEKi) on the IFN response following challenge with two major respiratory viruses rhinovirus (RV2) and respiratory syncytial virus (RSVA2) and a TLR3 agonist, poly(I:C). METHODS: The impact of MEKi on viral load and IFN response was evaluated in primary AECs with or without a neutralising antibody against IFN-ß. Quantification of viral load was determined by live virus assay and absolute quantification using qRT-PCR. Secretion of cytokines was determined by AlphaLISA/ELISA and expression of interferon-stimulated genes (ISGs) was examined by qRT-PCR and immunoblotting. A poly(I:C) model was also used to further understand the molecular mechanism by which MEK controls IFN response. AlphaLISA, siRNA-interference, immunoblotting, and confocal microscopy was used to investigate the effect of MEKi on IRF3 activation and signalling. The impact of MEKi on ERK and AKT signalling was evaluated by immunoblotting and AlphaLISA. RESULTS: Here, we report that pharmacological inhibition of MEK pathway augments IRF3-driven type I and III IFN response in primary human AECs. MEKi induced activation of PI3K-AKT pathway, which was associated with phosphorylation/inactivation of the translational repressor 4E-BP1 and activation of the protein synthesis regulator p70 S6 kinase, two critical translational effectors. Elevated IFN-ß response due to MEKi was also attributed to decreased STAT3 activation, which consequently dampened expression of the transcriptional repressor of IFNB1 gene, PRDI-BF1. Augmented IFN response translated into inhibition of rhinovirus 2 replication in primary AECs but not respiratory syncytial virus A2. CONCLUSIONS: Our findings unveil MEK as a key molecular mechanism by which rhinovirus dampens the epithelial cell's antiviral response. Our study provides a better understanding of the role of signalling pathways in shaping the antiviral response and suggests the use of MEK inhibitors in anti-viral therapy against RV.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/virologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sistema Respiratório/citologia , Rhinovirus/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Idoso , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Interferon Tipo I/farmacologia , Masculino , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vírus Sinciciais Respiratórios/fisiologia , Rhinovirus/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Regulação para Cima/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Adulto Jovem
19.
Cell Microbiol ; 21(1): e12955, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30223301

RESUMO

Activation of the Raf/MEK/ERK cascade is required for efficient propagation of several RNA and DNA viruses, including human respiratory syncytial virus (RSV). In RSV infection, activation of the Raf/MEK/ERK cascade is biphasic. An early induction within minutes after infection is associated with viral attachment. Subsequently, a second activation occurs with, so far, unknown function in the viral life cycle. In this study, we aimed to characterise the role of Raf/MEK/ERK-mediated signalling during ongoing RSV infection. Our data show that inhibition of the kinase MEK after the virus has been internalised results in a reduction of viral titers. Further functional investigations revealed that the late-stage activation of ERK is required for a specific step in RSV replication, namely, the secretory transport of the RSV fusion protein F. Thus, MEK inhibition resulted in impaired surface accumulation of the F protein. F protein surface expression is essential for efficient replication as it is involved in viral filament formation, cell fusion, and viral transmission. In summary, we provide detailed insights of how host cell signalling interferes with RSV replication and identified the Raf/MEK/ERK kinase cascade as potential target for novel anti-RSV strategies.


Assuntos
Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Sistema de Sinalização das MAP Quinases , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Virais de Fusão/metabolismo , Replicação Viral , Animais , Células Cultivadas , Humanos , Transporte Proteico
20.
Front Immunol ; 9: 2229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323812

RESUMO

Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated with severe tissue damage due to hyperinduction of interferons and proinflammatory cytokines. The reasons for this excessive cytokine expression are still incompletely understood, which has hampered the development of efficient immunomodulatory treatment options. The host protein TRIM28 associates to the promoter regions of over 13,000 genes and is recognized as a genomic corepressor and negative immune regulator. TRIM28 corepressor activity is regulated by post-translational modifications, specifically phosphorylation of S473, which modulates binding of TRIM28 to the heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune regulator leading to increased IFN-ß and proinflammatory cytokine levels during infection with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as HPAIV of subtypes H7N7, H7N9, and H5N1, we could demonstrate that strain-specific phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of PKR, p38 MAPK, and MSK1 in response to RIG-I independent sensing of viral RNA. Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest that phosphorylation of S473 facilitates a functional switch leading to increased levels of IFN-ß, IL-6, and IL-8. In summary, we have identified TRIM28 as a critical factor controlling excessive expression of type I IFNs as well as proinflammatory cytokines during infection with H5N1, H7N7, and H7N9 HPAIV. In addition, our data indicate a novel mechanism of PKR-mediated IFN-ß expression, which could lay the ground for novel treatment options aiming at rebalancing dysregulated immune responses during severe HPAIV infection.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Interferon beta/metabolismo , Pulmão/virologia , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Células A549 , Análise de Variância , Animais , Sistemas CRISPR-Cas/genética , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação , Receptores Imunológicos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA