Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 11(1): 2008110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141051

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), a cell surface receptor, is expressed on normal epithelial tissue and highly expressed in cancers of high unmet medical need, such as non-small cell lung, pancreatic, and colorectal cancer. CEACAM receptors undergo homo- and heterophilic interactions thereby regulating normal tissue homeostasis and angiogenesis, and in cancer, tumor invasion and metastasis. CEACAM6 expression on malignant plasma cells inhibits antitumor activity of T cells, and we hypothesize a similar function on epithelial cancer cells. The interactions between CEACAM6 and its suggested partner CEACAM1 on T cells were studied. A humanized CEACAM6-blocking antibody, BAY 1834942, was developed and characterized for its immunomodulating effects in co-culture experiments with T cells and solid cancer cells and in comparison to antibodies targeting the immune checkpoints programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and T cell immunoglobulin mucin-3 (TIM-3). The immunosuppressive activity of CEACAM6 was mediated by binding to CEACAM1 expressed by activated tumor-specific T cells. BAY 1834942 increased cytokine secretion by T cells and T cell-mediated killing of cancer cells. The in vitro efficacy of BAY 1834942 correlated with the degree of CEACAM6 expression on cancer cells, suggesting potential in guiding patient selection. BAY 1834942 was equally or more efficacious compared to blockade of PD-L1, and at least an additive efficacy was observed in combination with anti-PD-1 or anti-TIM-3 antibodies, suggesting an efficacy independent of the PD-1/PD-L1 axis. In summary, CEACAM6 blockade by BAY 1834942 reactivates the antitumor response of T cells. This warrants clinical evaluation.


Assuntos
Antígenos CD , Neoplasias , Receptor de Morte Celular Programada 1 , Antígenos CD/imunologia , Antígeno B7-H1/imunologia , Moléculas de Adesão Celular/imunologia , Proteínas Ligadas por GPI/imunologia , Humanos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T
2.
Clin Chem ; 67(4): 631-641, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33491069

RESUMO

BACKGROUND: Multiple technologies are available for detection of circulating tumor cells (CTCs), but standards to evaluate their technical performance are still lacking. This limits the applicability of CTC analysis in clinic routine. Therefore, in the context of the CANCER-ID consortium, we established a platform to assess technical validity of CTC detection methods in a European multi-center setting using non-small cell lung cancer (NSCLC) as a model. METHODS: We characterized multiple NSCLC cell lines to define cellular models distinct in their phenotype and molecular characteristics. Standardized tumor-cell-bearing blood samples were prepared at a central laboratory and sent to multiple European laboratories for processing according to standard operating procedures. The data were submitted via an online tool and centrally evaluated. Five CTC-enrichment technologies were tested. RESULTS: We could identify 2 cytokeratin expressing cell lines with distinct levels of EpCAM expression: NCI-H441 (EpCAMhigh, CKpos) and NCI-H1563 (EpCAMlow, CKpos). Both spiked tumor cell lines were detected by all technologies except for the CellSearch system that failed to enrich EpCAMlow NCI-H1563 cells. Mean recovery rates ranged between 49% and 75% for NCI-H411 and 32% and 76% for NCI-H1563 and significant differences were observed between the tested methods. CONCLUSIONS: This multi-national proficiency testing of CTC-enrichment technologies has importance in the establishment of guidelines for clinically applicable (pre)analytical workflows and the definition of minimal performance qualification requirements prior to clinical validation of technologies. It will remain in operation beyond the funding period of CANCER-ID in the context of the European Liquid Biopsy Society (ELBS).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/diagnóstico
3.
Cancer Immunol Res ; 8(7): 895-911, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32312711

RESUMO

The immunoglobulin-like domain containing receptor 2 (ILDR2), a type I transmembrane protein belonging to the B7 family of immunomodulatory receptors, has been described to induce an immunosuppressive effect on T-cell responses. Besides its expression in several nonlymphoid tissue types, we found that ILDR2 was also expressed in fibroblastic reticular cells (FRC) in the stromal part of the lymph node. These immunoregulatory cells were located in the T-cell zone and were essential for the recruitment of naïve T cells and activated dendritic cells to the lymph nodes. Previously, it has been shown that an ILDR2-Fc fusion protein exhibits immunomodulatory effects in several models of autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and type I diabetes. Herein, we report the generation and characterization of a human/mouse/monkey cross-reactive anti-ILDR2 hIgG2 antibody, BAY 1905254, developed to block the immunosuppressive activity of ILDR2 for cancer immunotherapy. BAY 1905254 was shown to promote T-cell activation in vitro and enhance antigen-specific T-cell proliferation and cytotoxicity in vivo in mice. BAY 1905254 also showed potent efficacy in various syngeneic mouse cancer models, and the efficacy was found to correlate with increasing mutational load in the cancer models used. Additive or even synergistic antitumor effects were observed when BAY 1905254 was administered in combination with anti-PD-L1, an immunogenic cell death-inducing chemotherapeutic, or with tumor antigen immunization. Taken together, our data showed that BAY 1905254 is a potential drug candidate for cancer immunotherapy, supporting its further evaluation.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Imunoglobulina G/farmacologia , Ativação Linfocitária/imunologia , Proteínas de Membrana/imunologia , Neoplasias/tratamento farmacológico , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Tolerância Imunológica , Imunoglobulina G/imunologia , Imunoterapia/métodos , Leucócitos Mononucleares/imunologia , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/metabolismo
4.
Oncoimmunology ; 5(9): e1219009, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757318

RESUMO

Natural killer (NK) cell infusions can induce remissions in subsets of patients with different types of cancer. The optimal strategies for NK cell activation prior to infusion are still under debate. There is recent evidence that NK cells can acquire long-term functional competence by preactivation with the cytokines IL-12/15/18. The mechanisms supporting the maintenance of long-term NK cell antitumor activity are incompletely under-stood. Here, we show that NK cells preactivated in vitro with IL-12/15/18, but not with IL-15 alone, maintained high antitumor activity even 1 mo after transfer into lymphopenic RAG-2-/-γc-/- mice. The NK cell intrinsic ability for IFNγ production coincided with demethylation of the conserved non-coding sequence (CNS) 1 in the Ifng locus, previously shown to enhance transcription of Ifng. In a xenograft melanoma mouse model, human IL-12/15/18-preactivated NK cells rejected tumors more efficiently. In RAG-2-/-γc-/- mice, co-transfer of CD4+ T cells further improved the long-term competence of NK cells for IFNγ production that was dependent on IL-2. CD4+ T cell activation during homeostatic proliferation required macrophages and further promoted the long-term NK cell antitumor activity. Thus, NK cells can "remember" a previous exposure to cytokines by epigenetic imprinting resulting in a remarkable stability of the IFNγ-producing phenotype after adoptive transfer. In addition, our results support combination of cytokine-preactivated NK cells with CD4+ T cell activation upon lymphopenic conditioning to achieve long-term NK cell effector function for cancer immunotherapy.

5.
J Leukoc Biol ; 100(6): 1297-1310, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354408

RESUMO

Whereas innate immune cells, such as NK and innate lymphoid cells (ILCs), have been characterized in different human tissues, knowledge on the thymic CD56-expressing cell subsets is limited. In this study, the rare subpopulations of thymic CD56+CD3- cells from samples of >100 patients have been successfully analyzed. The results revealed fundamental differences between thymic and peripheral blood (PB) CD56+CD3- cells. Thymic tissues lacked immunoregulatory CD56highCD16dim NK cells but showed two Eomes+CD56dim subsets on which common NK cell markers were significantly altered. CD56dimCD16high cells expressed high amounts of NKG2A, NKG2D, and CD27 with low CD57. Conversely, CD56dimCD16dim cells displayed high CD127 but low expression of KIR, NKG2D, and natural cytotoxicity receptors (NCRs). Thymic CD56+CD3- cells were able to gain cytotoxicity but were especially immunoregulatory cells, producing a broad range of cytokines. Finally, one population of thymic CD56+ cells resembled conventional NK cells, whereas the other represented a novel, noncanonical NK subset.


Assuntos
Antígeno CD56/análise , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Timo/imunologia , Adulto , Envelhecimento/imunologia , Antígenos CD/análise , Degranulação Celular , Separação Celular , Criança , Citocinas/biossíntese , Citotoxicidade Imunológica , Citometria de Fluxo , Humanos , Imunofenotipagem/métodos , Células Matadoras Naturais/classificação , Microscopia Confocal , Microscopia de Fluorescência , Receptores de Células Matadoras Naturais/análise , Timo/citologia , Timo/crescimento & desenvolvimento
6.
Immunity ; 38(6): 1223-35, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23791642

RESUMO

RORγt⁺ innate lymphoid cells (ILCs) are crucial players of innate immune responses and represent a major source of interleukin-22 (IL-22), which has an important role in mucosal homeostasis. The signals required by RORγt⁺ ILCs to express IL-22 and other cytokines have been elucidated only partially. Here we showed that RORγt⁺ ILCs can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORγt⁺ ILCs selectively activated a coordinated proinflammatory program, including tumor necrosis factor (TNF), whereas cytokine stimulation preferentially induced IL-22 expression. However, combined engagement of NKp44 and cytokine receptors resulted in a strong synergistic effect. These data support the concept that NKp44⁺ RORγt⁺ ILCs can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.


Assuntos
Interleucinas/metabolismo , Linfócitos/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Células Cultivadas , Microambiente Celular , Homeostase , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Mucosa/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Receptor Cross-Talk , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina 22
7.
Blood ; 116(8): 1299-307, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20505160

RESUMO

Human natural killer (NK) cells comprise 2 main subsets, CD56(bright) and CD56(dim) cells, that differ in function, phenotype, and tissue localization. To further dissect the heterogeneity of CD56(dim) cells, we have performed transcriptome analysis and functional ex vivo characterization of human NK-cell subsets according to the expression of markers related to differentiation, migration or competence. Here, we show for the first time that the ability to respond to cytokines or to activating receptors is mutually exclusive in almost all NK cells with the exception of CD56(dim) CD62L(+) cells. Indeed, only these cells combine the ability to produce interferon-gamma after cytokines and proliferate in vivo during viral infection with the capacity to kill and produce cytokines upon engagement of activating receptors. Therefore, CD56(dim) CD62L(+) cells represent a unique subset of polyfunctional NK cells. Ex vivo analysis of their function, phenotype, telomere length, frequencies during ageing as well as transfer experiments of NK-cell subsets into immunodeficient mice suggest that CD56(dim) CD62L(+) cells represent an intermediate stage of NK-cell maturation, which after restimulation can accomplish multiple tasks and further develop into terminally differentiated effectors.


Assuntos
Antígeno CD56/metabolismo , Células Matadoras Naturais/metabolismo , Selectina L/metabolismo , Leucócitos Mononucleares/metabolismo , Subpopulações de Linfócitos/imunologia , Animais , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Citotoxicidade Imunológica/imunologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Ativação Linfocitária , Subpopulações de Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Quimiocinas/metabolismo , Telômero/fisiologia , Irradiação Corporal Total
8.
Dev Biol ; 309(1): 97-112, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17662710

RESUMO

Initiation of the development of the anterior-posterior axis in the mouse embryo has been thought to take place only when the anterior visceral endoderm (AVE) emerges and starts its asymmetric migration. However, expression of Lefty1, a marker of the AVE, was recently found to initiate before embryo implantation. This finding has raised two important questions: are the cells that show such early, preimplantation expression of this AVE marker the real precursors of the AVE and, if so, how does this contribute to the establishment of the AVE? Here, we address both of these questions. First, we show that the expression of another AVE marker, Cer1, also commences before implantation and its expression becomes consolidated in the subset of ICM cells that comprise the primitive endoderm. Second, to determine whether the cells showing this early Cer1 expression are true precursors of the AVE, we set up conditions to trace these cells in time-lapse studies from early periimplantation stages until the AVE emerges and becomes asymmetrically displaced. We found that Cer1-expressing cells are asymmetrically located after implantation and, as the embryo grows, they become dispersed into two or three clusters. The expression of Cer1 in the proximal domain is progressively diminished, whilst it is reinforced in the distal-lateral domain. Our time-lapse studies demonstrate that this distal-lateral domain is incorporated into the AVE together with cells in which Cer1 expression begins only after implantation. Thus, the AVE is formed from both part of an ancestral population of Cerl-expressing cells and cells that acquire Cer1 expression later. Finally, we demonstrate that when the AVE shifts asymmetrically to establish the anterior pole, this occurs towards the region where the earlier postimplantation expression of Cer1 was strongest. Together, these results suggest that the orientation of the anterior-posterior axis is already anticipated before AVE migration.


Assuntos
Diferenciação Celular/fisiologia , Implantação do Embrião , Células-Tronco Embrionárias/citologia , Endoderma/fisiologia , Proteínas/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Padronização Corporal , Movimento Celular/fisiologia , Citocinas , Células-Tronco Embrionárias/metabolismo , Endoderma/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA