Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37961561

RESUMO

The cell membrane proteome is the primary biohub for cell communication, yet we are only beginning to understand the dynamic protein neighborhoods that form on the cell surface and between cells. Proximity labeling proteomics (PLP) strategies using chemically reactive probes are powerful approaches to yield snapshots of protein neighborhoods but are currently limited to one single resolution based on the probe labeling radius. Here, we describe a multi-scale PLP method with tunable resolution using a commercially available histological dye, Eosin Y, which upon visible light illumination, activates three different photo-probes with labeling radii ranging from ∼100 to 3000 Å. We applied this platform to profile neighborhoods of the oncogenic epidermal growth factor receptor (EGFR) and orthogonally validated >20 neighbors using immuno-assays and AlphaFold-Multimer prediction that generated plausible binary interaction models. We further profiled the protein neighborhoods of cell-cell synapses induced by bi-specific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)T cells at longer length scales. This integrated multi-scale PLP platform maps local and distal protein networks on cell surfaces and between cells. We believe this information will aid in the systematic construction of the cell surface interactome and reveal new opportunities for immunotherapeutics.

2.
ACS Cent Sci ; 8(10): 1447-1456, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36313159

RESUMO

Proteolytic cleavage of cell surface proteins triggers critical processes including cell-cell interactions, receptor activation, and shedding of signaling proteins. Consequently, dysregulated extracellular proteases contribute to malignant cell phenotypes including most cancers. To understand these effects, methods are needed that identify proteolyzed membrane proteins within diverse cellular contexts. Herein we report a proteomic approach, called cell surface N-terminomics, to broadly identify precise cleavage sites (neo-N-termini) on the surface of living cells. First, we functionalized the engineered peptide ligase, called stabiligase, with an N-terminal nucleophile that enables covalent attachment to naturally occurring glycans. Upon the addition of a biotinylated peptide ester, glycan-tethered stabiligase efficiently tags extracellular neo-N-termini for proteomic analysis. To demonstrate the versatility of this approach, we identified and characterized 1532 extracellular neo-N-termini across a panel of different cell types including primary immune cells. The vast majority of cleavages were not identified by previous proteomic studies. Lastly, we demonstrated that single oncogenes, KRAS(G12V) and HER2, induce extracellular proteolytic remodeling of proteins involved in cancerous cell growth, invasion, and migration. Cell surface N-terminomics is a generalizable platform that can reveal proteolyzed, neoepitopes to target using immunotherapies.

3.
Nat Cell Biol ; 24(1): 24-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027731

RESUMO

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. Here we show that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells, including those of human nasal epithelia. Moreover, pharmacological BRD2 inhibition with the drug ABBV-744 inhibited SARS-CoV-2 replication in Syrian hamsters. We also found that BRD2 controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates the antiviral response. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a therapeutic target for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Células Epiteliais/virologia , SARS-CoV-2/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
4.
ACS Nano ; 15(12): 19202-19210, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34813293

RESUMO

Advances in single-cell level profiling of the proteome require quantitative and versatile platforms, especially for rare cell analyses such as circulating tumor cell (CTC) profiling. Here we demonstrate an integrated microfluidic chip that uses magnetic nanoparticles to capture single tumor cells with high efficiency, permits on-chip incubation, and facilitates in situ cell-surface protein expression analysis. Combined with phage-based barcoding and next-generation sequencing technology, we were able to monitor changes in the expression of multiple surface markers stimulated in response to CTC adherence. Interestingly, we found fluctuations in the expression of Frizzled2 (FZD2) that reflected the microenvironment of the single cells. This platform has a high potential for in-depth screening of multiple surface antigens simultaneously in rare cells with single-cell resolution, which will provide further insights regarding biological heterogeneity and human disease.


Assuntos
Bacteriófagos , Nanopartículas , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular , Humanos , Microfluídica , Microambiente Tumoral
5.
Antibodies (Basel) ; 8(4)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694242

RESUMO

A promising molecular target for aggressive cancers is the urokinase receptor (uPAR). A fully human, recombinant antibody that binds uPAR to form a stable complex that blocks uPA-uPAR interactions (2G10) and is internalized primarily through endocytosis showed efficacy in a mouse xenograft model of highly aggressive, triple negative breast cancer (TNBC). Antibody-drug conjugates (ADCs) of 2G10 were designed and produced bearing tubulin inhibitor payloads ligated through seven different linkers. Aldehyde tag technology was employed for linking, and either one or two tags were inserted into the antibody heavy chain, to produce site-specifically conjugated ADCs with drug-to-antibody ratios of either two or four. Both cleavable and non-cleavable linkers were combined with two different antimitotic toxins-MMAE (monomethylauristatin E) and maytansine. Nine different 2G10 ADCs were produced and tested for their ability to target uPAR in cell-based assays and a mouse model. The anti-uPAR ADC that resulted in tumor regression comprised an MMAE payload with a cathepsin B cleavable linker, 2G10-RED-244-MMAE. This work demonstrates in vitro activity of the 2G10-RED-244-MMAE in TNBC cell lines and validates uPAR as a therapeutic target for TNBC.

6.
ACS Biomater Sci Eng ; 2(8): 1367-1375, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-33434990

RESUMO

The ability to observe cell adhesion processes in real-time remains a grand challenge in basic biology and medicine. Toward this goal, we have developed a lateral optical microscope that allows direct observation of cell-substrate interactions in real-time on any substrate-transparent, opaque, or coated-without requiring labels or specialized optical components. We demonstrate the use of our lateral microscope by quantifying dynamic changes in cell morphology during the first 90 min of adhesion to various materials. Specifically, we determined the rates of change in contact angle of HeLa, 3T3, HEK293, and MDA-MB-231 cells on five different substrates: glass, collagen-coated glass, Nylon, PTFE, and collagen-alginate hydrogels. We used these rates of change to compare adhesion of different cell lines on each surface, and to rank the adhesion-promoting capacities of the five surfaces for each cell line. For HeLa, 3T3, and HEK293 cells, we observed maximal rates of change in contact angle (0.058 min-1) on collagen-coated glass substrates. All five cell lines exhibited minimal rates of change (0.006 min-1) on PTFE. Lateral microscopy also revealed a unique morphology among MDA-MB-231 breast cancer cells during initial adhesion, which we quantified using measurements of changes in cell height. Our lateral microscope will not only enable more comprehensive, quantitative studies of cell adhesion to inform the development of biomaterials but will ultimately assist in advancing our understanding of many important biological processes and discovering new behaviors related to cell adhesion.

7.
Mol Biosyst ; 10(1): 18-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24185689

RESUMO

Alanine scanning mutagenesis of a recently reported prostate cancer cell-selective Protein Transduction Domain (PTD) was used to assess the specific contribution each residue plays in cell uptake efficiency and cell-selectivity. These studies resulted in the identification of two key residues. Extensive mutagenesis at these key residues generated multiple mutants with significantly improved uptake efficiency and cell-selectivity profiles for targeted cells. The best mutant exhibits ~19-fold better uptake efficiency and ~4-fold improved cell-selectivity for a human prostate cancer cell line. In addition, while the native PTD sequence was capable of delivering functional fluorescent protein to the interior of a prostate cancer cells, only modest functional enzyme delivery was achieved. In contrast, the most potent mutant was able to deliver large quantities of a functional enzyme to the interior of human prostate cancer cells. Taken together, the research described herein has significantly improved the efficiency, cell-selectivity, and functional utility of a prostate cancer PTD.


Assuntos
Alanina/genética , Neoplasias da Próstata/genética , Estrutura Terciária de Proteína/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Masculino , Mutagênese , Neoplasias da Próstata/patologia , Transdução Genética
8.
Chem Biol ; 20(3): 434-44, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23521800

RESUMO

Protein transduction domains (PTDs) are reagents that facilitate the delivery of diverse cargo to the interior of mammalian cells. We identified a PTD called "Ypep" (N-YTFGLKTSFNVQ-C), with cell penetration selectivity and potency profiles that are tightly controlled by multivalency effects. Pentavalent display of Ypep on M13 bacteriophage enables selective uptake of this phage in PC-3 human prostate cancer cells at low picomolar concentration and in the presence of human blood. All Ypep-dependent delivery is nontoxic and proceeds through energy-dependent endocytosis. Collectively, our results establish Ypep-displaying phage as a cell-penetrating platform with selectivity and potency profiles that compare to, or exceed, antibodies and their fragments. Our findings may have broader implications on the design of PTD technologies generated from phage display, as well as the use of Ypep-displaying phage as a prostate cancer cell-selective delivery platform.


Assuntos
Descoberta de Drogas , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Oligopeptídeos/química , Biblioteca de Peptídeos , Transporte Proteico/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA