Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Redox Biol ; 74: 103229, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870781

RESUMO

BACKGROUND: Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, is critically involved in the regulation of oxidative stress and inflammation. However, the role of endothelial Nrf2 in atherogenesis has yet to be defined. In addition, how endothelial Nrf2 is activated and whether Nrf2 can be targeted for the prevention and treatment of atherosclerosis is not explored. METHODS: RNA-sequencing and single-cell RNA sequencing analysis of mouse atherosclerotic aortas were used to identify the differentially expressed genes. In vivo endothelial cell (EC)-specific activation of Nrf2 was achieved by injecting adeno-associated viruses into ApoE-/- mice, while EC-specific knockdown of Nrf2 was generated in Cdh5CreCas9floxed-stopApoE-/- mice. RESULTS: Endothelial inflammation appeared as early as on day 3 after feeding of a high cholesterol diet (HCD) in ApoE-/- mice, as reflected by mRNA levels, immunostaining and global mRNA profiling, while the immunosignal of the end-product of lipid peroxidation (LPO), 4-hydroxynonenal (4-HNE), started to increase on day 10. TNF-α, 4-HNE, and erastin (LPO inducer), activated Nrf2 signaling in human ECs by increasing the mRNA and protein expression of Nrf2 target genes. Knockdown of endothelial Nrf2 resulted in augmented endothelial inflammation and LPO, and accelerated atherosclerosis in Cdh5CreCas9floxed-stopApoE-/- mice. By contrast, both EC-specific and pharmacological activation of Nrf2 inhibited endothelial inflammation, LPO, and atherogenesis. CONCLUSIONS: Upon HCD feeding in ApoE-/- mice, endothelial inflammation is an earliest event, followed by the appearance of LPO. EC-specific activation of Nrf2 inhibits atherosclerosis while EC-specific knockdown of Nrf2 results in the opposite effect. Pharmacological activators of endothelial Nrf2 may represent a novel therapeutic strategy for the treatment of atherosclerosis.


Assuntos
Apolipoproteínas E , Aterosclerose , Células Endoteliais , Inflamação , Peroxidação de Lipídeos , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Inflamação/metabolismo , Inflamação/genética , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo
2.
Adv Sci (Weinh) ; 11(12): e2307256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233193

RESUMO

Atherosclerosis is initiated with endothelial cell (EC) dysfunction and vascular inflammation under hyperlipidemia. Sirtuin 3 (SIRT3) is a mitochondrial deacetylase. However, the specific role of endothelial SIRT3 during atherosclerosis remains poorly understood. The present study aims to study the role and mechanism of SIRT3 in EC function during atherosclerosis. Wild-type Sirt3f/f mice and endothelium-selective SIRT3 knockout Sirt3f/f; Cdh5Cre/+ (Sirt3EC-KO) mice are injected with adeno-associated virus (AAV) to overexpress PCSK9 and fed with high-cholesterol diet (HCD) for 12 weeks to induce atherosclerosis. Sirt3EC-KO mice exhibit increased atherosclerotic plaque formation, along with elevated macrophage infiltration, vascular inflammation, and reduced circulating L-arginine levels. In human ECs, SIRT3 inhibition resulted in heightened vascular inflammation, reduced nitric oxide (NO) production, increased reactive oxygen species (ROS), and diminished L-arginine levels. Silencing of SIRT3 results in hyperacetylation and deactivation of Argininosuccinate Synthase 1 (ASS1), a rate-limiting enzyme involved in L-arginine biosynthesis, and this effect is abolished in mutant ASS1. Furthermore, L-arginine supplementation attenuates enhanced plaque formation and vascular inflammation in Sirt3EC-KO mice. This study provides compelling evidence supporting the protective role of endothelial SIRT3 in atherosclerosis and also suggests a critical role of SIRT3-induced deacetylation of ASS1 by ECs for arginine synthesis.


Assuntos
Aterosclerose , Sirtuína 3 , Humanos , Camundongos , Animais , Pró-Proteína Convertase 9 , Argininossuccinato Sintase , Arginina , Endotélio , Inflamação
3.
J Leukoc Biol ; 115(1): 100-115, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37195903

RESUMO

Hematopoiesis is a highly orchestrated biological process sustaining the supply of leukocytes involved in the maintenance of immunity, O2 and CO2 exchange, and wound healing throughout the lifetime of an animal, including humans. During early hematopoietic cell development, several waves of hematopoiesis require the precise regulation of hematopoietic ontogeny as well as the maintenance of hematopoietic stem and progenitor cells in the hematopoietic tissues, such as the fetal liver and bone marrow. Recently, emerging evidence has suggested the critical role of m6A messenger RNA (mRNA) modification, an epigenetic modification dynamically regulated by its effector proteins, in the generation and maintenance of hematopoietic cells during embryogenesis. In the adulthood, m6A has also been demonstrated to be involved in the functional maintenance of hematopoietic stem and progenitor cells in the bone marrow and umbilical cord blood, as well as the progression of malignant hematopoiesis. In this review, we focus on recent progress in identifying the biological functions of m6A mRNA modification, its regulators, and downstream gene targets during normal and pathological hematopoiesis. We propose that targeting m6A mRNA modification could offer novel insights into therapeutic development against abnormal and malignant hematopoietic cell development in the future.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Animais , Humanos , Adulto , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Medula Óssea/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Dev Cell ; 58(16): 1502-1512.e3, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37348503

RESUMO

Cardiac resident macrophages play vital roles in heart development, homeostasis, repair, and regeneration. Recent studies documented the hematopoietic potential of cardiac endothelium that supports the generation of cardiac macrophages and peripheral blood cells in mice. However, the conclusion was not strongly supported by previous genetic tracing studies, given the non-specific nature of conventional Cre-loxP tracing tools. Here, we develop an intercellular genetic labeling system that can permanently trace heart-specific endothelial cells based on cell-cell interaction in mice. Results from cell-cell contact-mediated genetic fate mapping demonstrate that cardiac endothelial cells do not exhibit hemogenic potential and do not contribute to cardiac macrophages or other circulating blood cells. This Matters Arising paper is in response to Shigeta et al. (2019), published in Developmental Cell. See also the response by Liu and Nakano (2023), published in this issue.


Assuntos
Células Endoteliais , Coração , Camundongos , Animais , Linhagem da Célula/genética , Diferenciação Celular , Endotélio
5.
Proc Natl Acad Sci U S A ; 120(25): e2207210120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307455

RESUMO

The classical manifestation of COVID-19 is pulmonary infection. After host cell entry via human angiotensin-converting enzyme II (hACE2), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus can infect pulmonary epithelial cells, especially the AT2 (alveolar type II) cells that are crucial for maintaining normal lung function. However, previous hACE2 transgenic models have failed to specifically and efficiently target the cell types that express hACE2 in humans, especially AT2 cells. In this study, we report an inducible, transgenic hACE2 mouse line and showcase three examples for specifically expressing hACE2 in three different lung epithelial cells, including AT2 cells, club cells, and ciliated cells. Moreover, all these mice models develop severe pneumonia after SARS-CoV-2 infection. This study demonstrates that the hACE2 model can be used to precisely study any cell type of interest with regard to COVID-19-related pathologies.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Camundongos Transgênicos , SARS-CoV-2 , Células Epiteliais , Células Epiteliais Alveolares , Modelos Animais de Doenças
6.
PLoS Genet ; 18(7): e1010262, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793278

RESUMO

Urinary cell-free DNA (ucfDNA) is a potential biomarker for bladder cancer detection. However, the biological characteristics of ucfDNA are not well understood. We explored the roles of deoxyribonuclease 1 (DNASE1) and deoxyribonuclease 1-like 3 (DNASE1L3) in the fragmentation of ucfDNA using mouse models. The deletion of Dnase1 in mice (Dnase1-/-) caused aberrations in ucfDNA fragmentation, including a 24-fold increase in DNA concentration, and a 3-fold enrichment of long DNA molecules, with a relative decrease of fragments with thymine ends and reduction of jaggedness (i.e., the presence of single-stranded protruding ends). In contrast, such changes were not observed in mice with Dnase1l3 deletion (Dnase1l3-/-). These results suggested that DNASE1 was an important nuclease contributing to the ucfDNA fragmentation. Western blot analysis revealed that the concentration of DNASE1 protein was higher in urine than DNASE1L3. The native-polyacrylamide gel electrophoresis zymogram showed that DNASE1 activity in urine was higher than that in plasma. Furthermore, the proportion of ucfDNA fragment ends within DNase I hypersensitive sites (DHSs) was significantly increased in Dnase1-deficient mice. In humans, patients with bladder cancer had lower proportions of ucfDNA fragment ends within the DHSs when compared with participants without bladder cancer. The area under the curve (AUC) for differentiating patients with and without bladder cancer was 0.83, suggesting the analysis of ucfDNA fragmentation in the DHSs may have potential for bladder cancer detection. This work revealed the intrinsic links between the nucleases in urine and ucfDNA fragmentomics.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Bexiga Urinária , Animais , Ácidos Nucleicos Livres/genética , DNA/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Endodesoxirribonucleases/genética , Endonucleases , Humanos , Camundongos , Camundongos Knockout , Neoplasias da Bexiga Urinária/genética
7.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35482005

RESUMO

Tissue-resident macrophages play essential functions in the maintenance of tissue homeostasis and repair. Recently, the endocardium has been reported as a de novo hemogenic site for the contribution of hematopoietic cells, including cardiac macrophages, during embryogenesis. These observations challenge the current consensus that hematopoiesis originates from the hemogenic endothelium within the yolk sac and dorsal aorta. Whether the developing endocardium has such a hemogenic potential requires further investigation. Here, we generated new genetic tools to trace endocardial cells and reassessed their potential contribution to hematopoietic cells in the developing heart. Fate-mapping analyses revealed that the endocardium contributed minimally to cardiac macrophages and circulating blood cells. Instead, cardiac macrophages were mainly derived from the endothelium during primitive/transient definitive (yolk sac) and definitive (dorsal aorta) hematopoiesis. Our findings refute the concept of endocardial hematopoiesis, suggesting that the developing endocardium gives rise minimally to hematopoietic cells, including cardiac macrophages.


Assuntos
Linhagem da Célula , Coração , Macrófagos , Miocárdio , Animais , Aorta/citologia , Endocárdio/citologia , Coração/embriologia , Hematopoese/genética , Miocárdio/citologia , Saco Vitelino/citologia
8.
Front Cardiovasc Med ; 9: 852775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295259

RESUMO

Enhancement of protein synthesis from mRNA translation is one of the key steps supporting cardiomyocyte hypertrophy during cardiac remodeling. The methyltransferase-like5 (METTL5), which catalyzes m6A modification of 18S rRNA at position A1832, has been shown to regulate the efficiency of mRNA translation during the differentiation of ES cells and the growth of cancer cells. It remains unknown whether and how METTL5 regulates cardiac hypertrophy. In this study, we have generated a mouse model, METTL5-cKO, with cardiac-specific depletion of METTL5 in vivo. Loss function of METTL5 promotes pressure overload-induced cardiomyocyte hypertrophy and adverse remodeling. The regulatory function of METTL5 in hypertrophic growth of cardiomyocytes was further confirmed with both gain- and loss-of-function approaches in primary cardiomyocytes. Mechanically, METTL5 can modulate the mRNA translation of SUZ12, a core component of PRC2 complex, and further regulate the transcriptomic shift during cardiac hypertrophy. Altogether, our study may uncover an important translational regulator of cardiac hypertrophy through m6A modification.

9.
Theranostics ; 12(4): 1855-1869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198077

RESUMO

Rationale: Restoration of vascular perfusion in peripheral arterial disease involves a combination of neovessel formation and the functional restoration of vascular endothelium. Previous studies indicated that ligand-dependent PPARδ activation enhances angiogenesis. However, how PPARδ is triggered by hypoxia and its downstream effects during post-ischemic vascular repair was not well understood. Methods: We induced experimental hindlimb ischemia in endothelial cell selective Ppard knockout induced by Cdh5-Cre mediated deletion of floxed Ppard allele in mice and their wild type control and observed blood perfusion, capillary density, vascular relaxation, and vascular leakage. Results: Deletion of endothelial Ppard delayed perfusion recovery and tissue repair, accompanied by delayed post-ischemic angiogenesis, impaired restoration of vascular integrity, more vascular leakage and enhanced inflammatory responses. At the molecular level, hypoxia upregulated and activated PPARδ in endothelial cells, whereas PPARδ reciprocally stabilized HIF1α protein to prevent its ubiquitin-mediated degradation. PPARδ directly bound to the oxygen-dependent degradation domain of HIF1α at the ligand-dependent domain of PPARδ. Importantly, this HIF1α-PPARδ interaction was independent of PPARδ ligand. Adeno-associated virus mediated endothelium-targeted overexpression of stable HIF1α in vivo improved perfusion recovery, suppressed vascular inflammation, and enhanced vascular repair, to counteract with the effect of Ppard knockout after hindlimb ischemia in mice. Conclusions: In summary, hypoxia-induced, ligand-independent activation of PPARδ in ECs stabilizes HIF1α and serves as a critical regulator for HIF1α activation to facilitate the post-ischemic restoration of vascular homeostasis.


Assuntos
PPAR delta , Animais , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Membro Posterior , Hipóxia/metabolismo , Isquemia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , PPAR delta/genética , PPAR delta/metabolismo , PPAR delta/farmacologia
10.
J Mol Cell Cardiol ; 164: 69-82, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34838588

RESUMO

The global propagation of SARS-CoV-2 leads to an unprecedented public health emergency. Despite that the lungs are the primary organ targeted by COVID-19, systemic endothelial inflammation and dysfunction is observed particularly in patients with severe COVID-19, manifested by elevated endothelial injury markers, endotheliitis, and coagulopathy. Here, we review the clinical characteristics of COVID-19 associated endothelial dysfunction; and the likely pathological mechanisms underlying the disease including direct cell entry or indirect immune overreactions after SARS-CoV-2 infection. In addition, we discuss potential biomarkers that might indicate the disease severity, particularly related to the abnormal development of thrombosis that is a fatal vascular complication of severe COVID-19. Furthermore, we summarize clinical trials targeting the direct and indirect pathological pathways after SARS-CoV-2 infection to prevent or inhibit the virus induced endothelial disorders.


Assuntos
COVID-19/patologia , Endotélio Vascular/patologia , SARS-CoV-2 , Adolescente , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , COVID-19/sangue , COVID-19/complicações , COVID-19/fisiopatologia , COVID-19/terapia , Ensaios Clínicos como Assunto , Células Endoteliais/patologia , Células Endoteliais/virologia , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Proteína HMGB1/fisiologia , Humanos , Macaca mulatta , Camundongos , Neuropilina-1/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Receptores Virais/fisiologia , Receptores Depuradores Classe B/fisiologia , Índice de Gravidade de Doença , Transdução de Sinais , Síndrome de Resposta Inflamatória Sistêmica/patologia , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Trombofilia/etiologia , Trombofilia/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Vasculite/etiologia , Vasculite/imunologia , Vasculite/fisiopatologia , Adulto Jovem
11.
Front Cardiovasc Med ; 8: 810477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174224

RESUMO

Recently, the extracellular matrix protein agrin has been reported to promote tumor angiogenesis that supports tumorigenesis and metastasis; however, there is a lack of in vivo genetic evidence to prove whether agrin derived from the tumors or endothelial cells (ECs) systemically should be the therapeutic target. To date, the physiological role of endothelial agrin has also not been investigated. In the EC-specific agrin knockout mice, we observed normal endothelial and haematopoietic cell development during embryogenesis. Moreover, these mice develop normal vascular barrier integrity and vasoreactivity at the adult stage. Importantly, the growth of localized or metastatic cancer cells was not affected after implantation into endothelial agrin depleted mice. Mechanistically, agrin did not regulate endothelial ERK1/2, YAP or p53 activation in vivo that is central to support endothelial proliferation, survival and invasion. Cumulatively, our findings may suggest that agrin could play a redundant role in endothelial development during physiological and tumor angiogenesis. Targeting the endothelial derived agrin might not be effective in inhibiting tumor angiogenesis.

12.
Stem Cell Reports ; 15(5): 1111-1126, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33096048

RESUMO

To date, it remains unclear if there are specific cell-surface markers for purifying glucose-responsive pancreatic ß-like cells derived from human pluripotent stem cells (hPSCs). In searching for this, we generated an efficient protocol for differentiating ß-like cells from human embryonic stem cells. We performed single-cell RNA sequencing and found that CD9 is a negative cell-surface marker of ß-like cells, as most INS+ cells are CD9-. We purified ß-like cells for spontaneous formation of islet-like organoids against CD9, and found significantly more NKX6.1+MAFA+C-PEPTIDE+ ß-like cells in the CD9- than in the CD9+ population. CD9- cells also demonstrate better glucose responsiveness than CD9+ cells. In humans, we observe more CD9+C-PEPTIDE+ ß cells in the fetal than in the adult cadaveric islets and more Ki67+ proliferating cells among CD9+ fetal ß cells. Taken together, our experiments show that CD9 is a cell-surface marker for negative enrichment of glucose-responsive ß-like cells differentiated from hPSCs.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Células Secretoras de Insulina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Tetraspanina 29/metabolismo , Biomarcadores/metabolismo , Peptídeo C/genética , Peptídeo C/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Organoides/metabolismo , RNA-Seq , Análise de Célula Única , Tetraspanina 29/genética , Transcriptoma
13.
J Leukoc Biol ; 108(5): 1593-1602, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33070367

RESUMO

Recently, immune cell-mediated tissue repair and regeneration has been an emerging paradigm of regenerative medicine. Immune cells form an essential part of the wound as induction of inflammation is a necessary step to elicit tissue healing. Rapid progress in transcriptomic analyses by high-throughput next-generation sequencing has been developed to study gene regulatory network and establish molecular signatures of immune cells that could potentially predict their functional roles in tissue repair and regeneration. However, the identification of cellular heterogeneity especially on the rare cell subsets has been limited in transcriptomic analyses of bulk cell populations. Therefore, genome-wide, single-cell RNA sequencing (scRNA-Seq) has offered an unprecedented approach to unravel cellular diversity and to study novel immune cell populations involved in tissue repair and regeneration through unsupervised sampling of individual cells without the need to rely on prior knowledge about cell-specific markers. The analysis of gene expression patterns at a single-cell resolution also holds promises to uncover the mechanisms and therefore the development of therapeutic strategy promoting immunoregenerative medicine. In this review, we will discuss how scRNA-Seq facilitates the characterization of immune cells, including macrophages, innate lymphoid cells and T and B lymphocytes, discovery of immune cell heterogeneity, identification of novel subsets, and tracking of developmental trajectories of distinct immune cells during tissue homeostasis, repair, and regeneration.


Assuntos
Linfócitos B/imunologia , Imunidade Celular/imunologia , Imunidade Inata , RNA-Seq , Regeneração/imunologia , Análise de Célula Única , Linfócitos T/imunologia , Antígenos de Diferenciação/imunologia , Humanos
14.
Dev Cell ; 54(5): 593-607.e5, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668208

RESUMO

Genetic lineage tracing unravels cell fate and plasticity in development, tissue homeostasis, and diseases. However, it remains technically challenging to trace temporary or transient cell fate, such as epithelial-to-mesenchymal transition (EMT) in tumor metastasis. Here, we generated a genetic fate-mapping system for temporally seamless tracing of transient cell fate. Highlighting its immediate application, we used it to study EMT gene activity from the local primary tumor to a distant metastatic site in vivo. In a spontaneous breast-to-lung metastasis model, we found that primary tumor cells activated vimentin and N-cadherin in situ, but only N-cadherin was activated and functionally required during metastasis. Tumor cells that have ever expressed N-cadherin constituted the majority of metastases in lungs, and functional deletion of N-cad significantly reduced metastasis. The seamless genetic recording system described here provides an alternative way for understanding transient cell fate and plasticity in biological processes.


Assuntos
Antígenos CD/genética , Caderinas/genética , Diferenciação Celular/genética , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica/genética , Antígenos CD/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/metabolismo , Diferenciação Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica/patologia , Vimentina/metabolismo
15.
Biomaterials ; 248: 120013, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32278152

RESUMO

We have previously demonstrated that short-term coreceptor blockade with non-lytic monoclonal antibodies enables the long-term survival of fully allogeneic embryonic stem cell (ESC) transplants in mice. Here, we describe the use of Hu-PBL humanized mice to determine whether short-term coreceptor blockade with humanized anti-human CD4 and CD8 antibodies can achieve the same outcome towards human ESC derivatives. While control Hu-PBL mice rejected allogeneic hESC-derived transplants within weeks, mice treated with coreceptor blocking antibodies held their grafts for 7 weeks, the duration of the study. Rejection in the control mice was associated with demonstrable infiltrates of human CD45 white blood cells, predominantly of CD8 T-cells, whereas anti-CD4, but not anti-CD8 antibody treated mice showed remarkably reduced lymphocyte infiltration and prolonged allograft survival, indicating that the CD4+ T-cells were crucial to the rejection process. Our results give support to the principle that short-term blockade of T-cell co-receptors can achieve long-term acceptance of regenerative cell transplants in humans.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Rejeição de Enxerto , Sobrevivência de Enxerto , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transplante Homólogo
16.
Am J Hum Genet ; 106(2): 202-214, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004449

RESUMO

Cell-free DNA (cf.DNA) is a powerful noninvasive biomarker for cancer and prenatal testing, and it circulates in plasma as short fragments. To elucidate the biology of cf.DNA fragmentation, we explored the roles of deoxyribonuclease 1 (DNASE1), deoxyribonuclease 1 like 3 (DNASE1L3), and DNA fragmentation factor subunit beta (DFFB) with mice deficient in each of these nucleases. By analyzing the ends of cf.DNA fragments in each type of nuclease-deficient mice with those in wild-type mice, we show that each nuclease has a specific cutting preference that reveals the stepwise process of cf.DNA fragmentation. Essentially, we demonstrate that cf.DNA is generated first intracellularly with DFFB, intracellular DNASE1L3, and other nucleases. Then, cf.DNA fragmentation continues extracellularly with circulating DNASE1L3 and DNASE1. With the use of heparin to disrupt the nucleosomal structure, we also show that the 10 bp periodicity originates from the cutting of DNA within an intact nucleosomal structure. Altogether, this work establishes a model of cf.DNA fragmentation.


Assuntos
Ácidos Nucleicos Livres/metabolismo , Cromatina/metabolismo , Fragmentação do DNA , Desoxirribonuclease I/fisiologia , Desoxirribonucleases/fisiologia , Endodesoxirribonucleases/fisiologia , Nucleossomos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , Animais , Ácidos Nucleicos Livres/genética , Cromatina/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Nucleossomos/genética
17.
Theranostics ; 9(15): 4324-4341, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31285764

RESUMO

The neonatal mouse heart is capable of transiently regenerating after injury from postnatal day (P) 0-7 and macrophages are found important in this process. However, whether macrophages alone are sufficient to orchestrate this regeneration; what regulates cardiomyocyte proliferation; why cardiomyocytes do not proliferate after P7; and whether adaptive immune cells such as regulatory T-cells (Treg) influence neonatal heart regeneration have less studied. Methods: We employed both loss- and gain-of-function transgenic mouse models to study the role of Treg in neonatal heart regeneration. In loss-of-function studies, we treated mice with the lytic anti-CD25 antibody that specifically depletes Treg; or we treated FOXP3DTR with diphtheria toxin that specifically ablates Treg. In gain-of-function studies, we adoptively transferred hCD2+ Treg from NOD.Foxp3hCD2 to NOD/SCID that contain Treg as the only T-cell population. Furthermore, we performed single-cell RNA-sequencing of Treg to uncover paracrine factors essential for cardiomyocyte proliferation. Results: Unlike their wild type counterparts, NOD/SCID mice that are deficient in T-cells but harbor macrophages fail to regenerate their injured myocardium at as early as P3. During the first week of injury, Treg are recruited to the injured cardiac muscle but their depletion contributes to more severe cardiac fibrosis. On the other hand, adoptive transfer of Treg results in mitigated fibrosis and enhanced proliferation and function of the injured cardiac muscle. Mechanistically, single-cell transcriptomic profiling reveals that Treg could be a source of regenerative factors. Treg directly promote proliferation of both mouse and human cardiomyocytes in a paracrine manner; and their secreted factors such as CCL24, GAS6 or AREG potentiate neonatal cardiomyocyte proliferation. By comparing the regenerating P3 and non-regenerating P8 heart, there is a significant increase in the absolute number of intracardiac Treg but the whole transcriptomes of these Treg do not differ regardless of whether the neonatal heart regenerates. Furthermore, even adult Treg, given sufficient quantity, possess the same regenerative capability. Conclusion: Our results demonstrate a regenerative role of Treg in neonatal heart regeneration. Treg can directly facilitate cardiomyocyte proliferation in a paracrine manner.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/citologia , Comunicação Parácrina , Regeneração/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Fibrose , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunidade Inata , Mutação com Perda de Função/genética , Macrófagos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
18.
FASEB J ; 33(1): 484-493, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30004796

RESUMO

Like conventional transplants, immunosuppression is required to facilitate survival and function of human embryonic stem cell (hESC) derivatives after implantation into xenogeneic recipients. We have previously reported that T cells alone are sufficient to reject allogeneic murine ESC derivatives; and strategies that inhibit T-cell activation, including coreceptor and costimulation blockade, prevent hESC derivatives from being rejected. This study aimed to investigate, in addition to T cells, whether macrophages contribute to transplant rejection of hESC xenografts with nonobese diabetic (NOD)/SCID mice that lack functional T and B cells but have macrophages. We show that acute rejection against hESC-derived endothelial cells (hESC-ECs) was mediated, to some degree, by infiltrating macrophages that phagocytosed them. Transgenic expression of murine CD47 on cell surface of hESC-ECs mitigates macrophage-mediated phagocytosis and improves their survival after transplantation. Our results highlight that innate immune cells, such as macrophages, can reject hESC derivatives, raising concern against the use of NOD/SCID as transplant recipients for testing in vivo function of hESC-derived tissues. Augmenting CD47 signaling promotes survival and function of hESC derivatives after xenogeneic transplantation.-Leung, C. S., Li, J., Xu, F., Wong, A. S. L., Lui, K. O. Ectopic expression of recipient CD47 inhibits mouse macrophage-mediated immune rejection against human stem cell transplants.


Assuntos
Antígeno CD47/metabolismo , Expressão Ectópica do Gene , Células-Tronco Embrionárias/citologia , Rejeição de Enxerto/prevenção & controle , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Transplante de Células-Tronco/métodos , Animais , Antígeno CD47/genética , Células Cultivadas , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Sobrevivência de Enxerto , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos SCID , Fagocitose , Transplante Heterólogo
19.
Genome Med ; 10(1): 71, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236153

RESUMO

BACKGROUND: We have previously reported an antigen-specific protocol to induce transplant tolerance and linked suppression to human embryonic stem cell (hESC)-derived tissues in immunocompetent mice through coreceptor and costimulation blockade. However, the exact mechanisms of acquired immune tolerance in this model have remained unclear. METHODS: We utilize the NOD.Foxp3hCD2 reporter mouse line and an ablative anti-hCD2 antibody to ask if CD4+FOXP3+ regulatory T cells (Treg) are required for coreceptor and costimulation blockade-induced immune tolerance. We also perform genome-wide single-cell RNA-sequencing to interrogate Treg during immune rejection and tolerance and to indicate possible mechanisms involved in sustaining Treg function. RESULTS: We show that Treg are indispensable for tolerance induced by coreceptor and costimulation blockade as depletion of which with an anti-hCD2 antibody resulted in rejection of hESC-derived pancreatic islets in NOD.Foxp3hCD2 mice. Single-cell transcriptomic profiling of 12,964 intragraft CD4+ T cells derived from rejecting and tolerated grafts reveals that Treg are heterogeneous and functionally distinct in the two outcomes of transplant rejection and tolerance. Treg appear to mainly promote chemotactic and ubiquitin-dependent protein catabolism during transplant rejection while seeming to harness proliferative and immunosuppressive function during tolerance. We also demonstrate that this form of acquired transplant tolerance is associated with increased proliferation and PD-1 expression by Treg. Blocking PD-1 signaling with a neutralizing anti-PD-1 antibody leads to reduced Treg proliferation and graft rejection. CONCLUSIONS: Our results suggest that short-term coreceptor and costimulation blockade mediates immune tolerance to hESC-derived pancreatic islets by promoting Treg proliferation through engagement of PD-1. Our findings could give new insights into clinical development of hESC-derived pancreatic tissues, combined with immunotherapies that expand intragraft Treg, as a potentially sustainable alternative treatment for T1D.


Assuntos
Perfilação da Expressão Gênica , Tolerância Imunológica/genética , Receptor de Morte Celular Programada 1/metabolismo , Análise de Célula Única , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Contagem de Células , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genoma , Rejeição de Enxerto/imunologia , Humanos , Ilhotas Pancreáticas/citologia , Transplante das Ilhotas Pancreáticas , Camundongos Endogâmicos C57BL , Transdução de Sinais , Baço/citologia
20.
Nat Protoc ; 13(10): 2217-2246, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250288

RESUMO

Unraveling the fates of resident stem cells during tissue regeneration is an important objective in clinical and basic research. Genetic lineage tracing based on Cre-loxP recombination provides an effective strategy for inferring cell fate and cell conversion in vivo. However, the determination of the exact fates of resident stem cells or their derivatives in disease states and during tissue regeneration remains controversial in many fields of study, partly because of technical limitations associated with Cre-based lineage tracing, such as, for example, off-target labeling. Recently, we generated a new lineage-tracing platform we named DeaLT (dual-recombinase-activated lineage tracing) that uses the Dre-rox recombination system to enhance the precision of Cre-mediated lineage tracing. Here, we describe as an example a detailed protocol using DeaLT to trace the fate of c-Kit+ cardiac stem cells and their derivatives, in the absence of any interference from nontarget cells such as cardiomyocytes, during organ homeostasis and after tissue injury. This lineage-tracing protocol can also be used to delineate the fate of resident stem cells of other organ systems, and takes ~10 months to complete, from mouse crossing to final tissue analysis.


Assuntos
Rastreamento de Células/métodos , Miocárdio/citologia , Proteínas Proto-Oncogênicas c-kit/análise , Células-Tronco/citologia , Animais , Linhagem da Célula , Feminino , Técnicas de Introdução de Genes/métodos , Técnicas de Genotipagem/métodos , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Recombinação Genética , Células-Tronco/metabolismo , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA