Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(32): 17936-17944, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37540829

RESUMO

Catalytic hydrogenolysis of polyolefins into valuable liquid, oil, or wax-like hydrocarbon chains for second-life applications is typically accompanied by the hydrogen-wasting co-formation of low value volatiles, notably methane, that increase greenhouse gas emissions. Catalytic sites confined at the bottom of mesoporous wells, under conditions in which the pore exerts the greatest influence over the mechanism, are capable of producing less gases than unconfined sites. A new architecture was designed to emphasize this pore effect, with the active platinum nanoparticles embedded between linear, hexagonal mesoporous silica and gyroidal cubic MCM-48 silica (mSiO2/Pt/MCM-48). This catalyst deconstructs polyolefins selectively into ∼C20-C40 paraffins and cleaves C-C bonds at a rate (TOF = 4.2 ± 0.3 s-1) exceeding that of materials lacking these combined features while generating negligible volatile side products including methane. The time-independent product distribution is consistent with a processive mechanism for polymer deconstruction. In contrast to time- and polymer length-dependent products obtained from non-porous catalysts, mSiO2/Pt/MCM-48 yields a C28-centered Gaussian distribution of waxy hydrocarbons from polyolefins of varying molecular weight, composition, and physical properties, including low-density polyethylene, isotactic polypropylene, ultrahigh-molecular-weight polyethylene, and mixtures of multiple, post-industrial polyolefins. Coarse-grained simulation reveals that the porous-core architecture enables the paraffins to diffuse away from the active platinum site, preventing secondary reactions that produce gases.

2.
ACS Cent Sci ; 6(12): 2267-2276, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33376787

RESUMO

Infections by intracellular pathogens are difficult to treat because of the poor accessibility of antibiotics to the pathogens encased by host cell membranes. As such, a strategy that can improve the membrane permeability of antibiotics would significantly increase their efficiency against the intracellular pathogens. Here, we report the design of an adaptive, metaphilic cell-penetrating polypeptide (CPP)-antibiotic conjugate (VPP-G) that can effectively eradicate the intracellular bacteria both in vitro and in vivo. VPP-G was synthesized by attaching vancomycin to a highly membrane-penetrative guanidinium-functionalized metaphilic CPP. VPP-G effectively kills not only extracellular but also far more challenging intracellular pathogens, such as S. aureus, methicillin-resistant S. aureus, and vancomycin-resistant Enterococci. VPP-G enters the host cell via a unique metaphilic membrane penetration mechanism and kills intracellular bacteria through disruption of both cell wall biosynthesis and membrane integrity. This dual antimicrobial mechanism of VPP-G prevents bacteria from developing drug resistance and could also potentially kill dormant intracellular bacteria. VPP-G effectively eradicates MRSA in vivo, significantly outperforming vancomycin, which represents one of the most effective intracellular antibacterial agents reported so far. This strategy can be easily adapted to develop other conjugates against different intracellular pathogens by attaching different antibiotics to these highly membrane-penetrative metaphilic CPPs.

3.
Nanomedicine ; 19: 126-135, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048082

RESUMO

PEGylation strategy has been widely used to enhance colloidal stability of polycation/DNA nanoparticles (NPs) for gene delivery. To investigate the effect of polyethylene glycol (PEG) terminal groups on the transfection properties of these NPs, we synthesized DNA NPs using PEG-g-linear polyethyleneimine (lPEI) with PEG terminal groups containing alkyl chains of various lengths with or without a hydroxyl terminal group. For both alkyl- and hydroxyalkyl-decorated NPs with PEG grafting densities of 1.5, 3, or 5% on lPEI, the highest levels of transfection and uptake were consistently achieved at intermediate alkyl chain lengths of 3 to 6 carbons, where the transfection efficiency is significantly higher than that of nonfunctionalized lPEI/DNA NPs. Molecular dynamics simulations revealed that both alkyl- and hydroxyalkyl-decorated NPs with intermediate alkyl chain length exhibited more rapid engulfment than NPs with shorter or longer alkyl chains. This study identifies a new parameter for the engineering design of PEGylated DNA NPs.


Assuntos
DNA/metabolismo , Endocitose , Nanopartículas/química , Polietilenoglicóis/química , Transfecção , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular
4.
Nanotechnology ; 28(20): 204002, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28266928

RESUMO

Efficient delivery of short interfering RNA (siRNA) remains one of the primary challenges of RNA interference therapy. Polyethylene glycol (PEG)ylated polycationic carriers have been widely used for the condensation of DNA and RNA molecules into complex-core micelles. The PEG corona of such nanoparticles can significantly improve their colloidal stability in serum, but PEGylation of the carriers also reduces their condensation capacity, hindering the generation of micellar particles with sufficient complex stability. This presents a particularly significant challenge for packaging siRNA into complex micelles, as it has a much smaller size and more rigid chain structure than DNA plasmids. Here, we report a new method to enhance the condensation of siRNA with PEGylated linear polyethylenimine using organic solvent and to prepare smaller siRNA nanoparticles with a more extended PEG corona and consequently higher stability. As a proof of principle, we have demonstrated the improved gene knockdown efficiency resulting from the reduced siRNA micelle size in mice livers following intravenous administration.


Assuntos
Micelas , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Solventes/química , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoimina/química
5.
ACS Nano ; 11(3): 2858-2871, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28212487

RESUMO

At physiological conditions, most proteins or peptides can fold into relatively stable structures that present on their molecular surfaces specific chemical patterns partially smeared out by thermal fluctuations. These nanoscopically defined patterns of charge, hydrogen bonding, and/or hydrophobicity, along with their elasticity and shape stability (folded proteins have Young's moduli of ∼1 × 108 Pa), largely determine and limit the interactions of these molecules, such as molecular recognition and allosteric regulation. In this work, we show that the membrane-permeating activity of antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) can be significantly enhanced using prototypical peptides with "molten" surfaces: metaphilic peptides with quasi-liquid surfaces and adaptable shapes. These metaphilic peptides have a bottlebrush-like architecture consisting of a rigid helical core decorated with mobile side chains that are terminated by cationic or hydrophobic groups. Computer simulations show that these flexible side chains can undergo significant rearrangement in response to different environments, giving rise to adaptable surface chemistry of the peptide. This quality makes it possible to control their hydrophobicity over a broad range while maintaining water solubility, unlike many AMPs and CPPs. Thus, we are able to show how the activity of these peptides is amplified by hydrophobicity and cationic charge, and rationalize these results using a quantitative mean-field theory. Computer simulations show that the shape-changing properties of the peptides and the resultant adaptive presentation of chemistry play a key enabling role in their interactions with membranes.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Penetradores de Células/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
6.
Proc Natl Acad Sci U S A ; 104(41): 15994-9, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17911256

RESUMO

The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.


Assuntos
Actinas/química , Actinas/metabolismo , Muramidase/química , Muramidase/metabolismo , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bacteriófago T4/enzimologia , Bacteriófago T4/genética , Sítios de Ligação , Estabilidade Enzimática , Técnicas In Vitro , Modelos Moleculares , Complexos Multiproteicos , Muramidase/genética , Muramidase/farmacologia , Mutagênese Sítio-Dirigida , Pseudomonas aeruginosa/efeitos dos fármacos , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Salinidade , Espalhamento a Baixo Ângulo , Eletricidade Estática , Termodinâmica , Água , Difração de Raios X
7.
Biophys J ; 90(12): 4630-8, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16565060

RESUMO

We present a combined experimental and computational study of the bundling of F-actin filaments induced by lysozyme proteins. Synchrotron small-angle x-ray scattering results show that these bundles consist of close-packed columnar complexes in which the actin is held together by incommensurate, one-dimensional arrays of lysozyme macroions. Molecular dynamics simulations of a coarse-grained model confirm the arrangement of the lysozyme and the stability of this structure. In addition, we find that these complexes remain stable even in the presence of significant concentrations of monovalent salt. The simulations show that this arises from partitioning of the salt between the aqueous and the condensed phases. The osmotic pressure resulting from the excess concentration of the salt in the aqueous phase balances the osmotic pressure increase in the bundle. These results are relevant for a variety of biological and biomedical problems in which electrostatic complexation between anionic polyelectrolytes and cationic globular proteins takes place, such as the pathological self-assembly of endogenous antibiotic polypeptides and inflammatory polymers in cystic fibrosis.


Assuntos
Actinas/química , Actinas/ultraestrutura , Modelos Químicos , Modelos Moleculares , Muramidase/química , Muramidase/ultraestrutura , Sais/química , Sítios de Ligação , Simulação por Computador , Cristalização/métodos , Ativação Enzimática , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA