Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 104: 112-27, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24675181

RESUMO

In the present study we have identified and characterized the proteins expressed during different developmental stages of Elaeis guineensis calli obtained from zygotic embryos. We were interested in the possible proteomic changes that would occur during the acquisition of somatic embryogenesis and therefore samples were collected from zygotic embryos (E1), swollen explants 14days (E2) in induction medium, primary callus (E3), and pro-embryogenic callus (E4). The samples were grinded in liquid nitrogen, followed by total protein extraction using phenol and extraction buffer. Proteins were analyzed by two-dimensional electrophoresis (2-DE) and the differentially expressed protein spots were analyzed by MALDI-TOF mass spectrometry (MS and MS/MS). Interestingly, we have identified proteins, which can be used as potential candidates for future studies aiming at the development of biomarkers for embryogenesis acquisition and for the different stages leading to pro-embryogenic callus formation such as type IIIa membrane protein cp-wap13, fructokinase and PR proteins. The results obtained shed some light on the biochemical events involved in the process of somatic embryogenesis of E. guineensis obtained from zygotic embryos. The use of stage-specific protein markers can help monitor cell differentiation and contribute to improve the protocols for successfully cloning the species. BIOLOGICAL SIGNIFICANCE: Understanding the fate and dynamics of cells and tissues during callus formation is essential to understand totipotency and the mechanisms involved during acquisition of somatic embryogenesis (SE). In this study we have investigated the early stages of somatic embryogenesis induction in oil palm and have identified potential markers as well as proteins potentially involved in embryogenic competence acquisition. The use of these proteins can help improve tissue culture protocols in order to increase regeneration rates. This article is part of a Special Issue entitled: Environmental and structural proteomics.


Assuntos
Arecaceae/embriologia , Arecaceae/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA