Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(22): 12844-12855, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533450

RESUMO

Pif1 family 5' → 3' DNA helicases are important for replication fork progression and genome stability. The budding yeast Saccharomyces cerevisiae encodes two Pif1 family helicases, Rrm3 and Pif1, both of which are multi-functional. Here we describe novel functions for Rrm3 in promoting mutation avoidance during DNA replication. We show that loss of RRM3 results in elevated spontaneous mutations made by DNA polymerases Pols ϵ and δ, which are subject to DNA mismatch repair. The absence of RRM3 also causes higher mutagenesis by the fourth B-family DNA polymerase Pol ζ. By genome-wide analysis, we show that the mutational consequences due to loss of RRM3 vary depending on the genomic locus. Rrm3 promotes the accuracy of DNA replication by Pols ϵ and δ across the genome, and it is particularly important for preventing Pol ζ-dependent mutagenesis at tRNA genes. In addition, mutation avoidance by Rrm3 depends on its helicase activity, and Pif1 serves as a backup for Rrm3 in suppressing mutagenesis. We present evidence that the sole human Pif1 family helicase in human cells likely also promotes replication fidelity, suggesting that a role for Pif1 family helicases in mutation avoidance may be evolutionarily conserved, a possible underlying mechanism for its potential tumor-suppressor function.


Assuntos
DNA Helicases , Replicação do DNA , Humanos , Células Cultivadas , Sequência Conservada , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA/genética , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
DNA Repair (Amst) ; 31: 41-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25996407

RESUMO

Mismatches generated during eukaryotic nuclear DNA replication are removed by two evolutionarily conserved error correction mechanisms acting in series, proofreading and mismatch repair (MMR). Defects in both processes are associated with increased susceptibility to cancer. To better understand these processes, we have quantified base selectivity, proofreading and MMR during nuclear DNA replication in Saccharomyces cerevisiae. In the absence of proofreading and MMR, the primary leading and lagging strand replicases, polymerase ɛ and polymerase δ respectively, synthesize DNA in vivo with somewhat different error rates and specificity, and with apparent base selectivity that is more than 100 times higher than measured in vitro. Moreover, leading and lagging strand replication fidelity rely on a different balance between proofreading and MMR. On average, proofreading contributes more to replication fidelity than does MMR, but their relative contributions vary from nearly all proofreading of some mismatches to mostly MMR of other mismatches. Thus accurate replication of the two DNA strands results from a non-uniform and variable balance between error prevention, proofreading and MMR.


Assuntos
Reparo de Erro de Pareamento de DNA , Replicação do DNA , Saccharomyces cerevisiae/genética , Pareamento Incorreto de Bases , Sequência de Bases , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Genome Res ; 24(11): 1751-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25217194

RESUMO

Mutational heterogeneity must be taken into account when reconstructing evolutionary histories, calibrating molecular clocks, and predicting links between genes and disease. Selective pressures and various DNA transactions have been invoked to explain the heterogeneous distribution of genetic variation between species, within populations, and in tissue-specific tumors. To examine relationships between such heterogeneity and variations in leading- and lagging-strand replication fidelity and mismatch repair, we accumulated 40,000 spontaneous mutations in eight diploid yeast strains in the absence of selective pressure. We found that replicase error rates vary by fork direction, coding state, nucleosome proximity, and sequence context. Further, error rates and DNA mismatch repair efficiency both vary by mismatch type, responsible polymerase, replication time, and replication origin proximity. Mutation patterns implicate replication infidelity as one driver of variation in somatic and germline evolution, suggest mechanisms of mutual modulation of genome stability and composition, and predict future observations in specific cancers.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Polimerase III/genética , DNA Polimerase II/genética , DNA Polimerase I/genética , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Algoritmos , DNA Polimerase I/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA , Evolução Molecular , Variação Genética , Modelos Genéticos , Taxa de Mutação , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA
4.
Environ Mol Mutagen ; 53(9): 777-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22965922

RESUMO

Multiple sequence changes that are simultaneously introduced in a single DNA transaction have a higher probability of altering gene function than do single base substitutions. DNA polymerase zeta (Pol ζ) has been shown to introduce such clustered mutations under specific selective and/or DNA damage-producing conditions. In this study, a forward mutation assay was used to determine the specificity of spontaneous mutations generated in Saccharomyces cerevisiae when either wild-type Pol ζ or a mutator Pol ζ variant (rev3-L979F) bypasses endogenous lesions. Mutagenesis in strains proficient for nucleotide excision repair (NER) was compared to mutagenesis in NER-deficient strains that retain unrepaired endogenous DNA lesions in the genome. Compared to NER-proficient strains, NER-deficient rad14Δ strains have elevated mutation rates that depend on Pol ζ. Rates are most strongly elevated for tandem base pair substitutions and clusters of multiple, closely spaced mutations. Both types of mutations depend on Pol ζ, but not on Pol η. Rates of each are further elevated in yeast strains bearing the rev3-979F allele. The results indicate that when Pol ζ performs mutagenic bypass of endogenous, helix-distorting lesions, it catalyzes a short track of processive, error-prone synthesis. We discuss the implications of this unique catalytic property of Pol ζ to its evolutionary conservation and possibly to multistage carcinogenesis.


Assuntos
Dano ao DNA , DNA Fúngico/genética , Mutação , Saccharomyces cerevisiae/genética , Sequência de Bases , Primers do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
5.
DNA Repair (Amst) ; 10(5): 476-82, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21414850

RESUMO

During DNA synthesis in vitro using dNTP and rNTP concentrations present in vivo, yeast replicative DNA polymerases α, δ and ɛ (Pols α, δ and ɛ) stably incorporate rNTPs into DNA. rNTPs are also incorporated during replication in vivo, and they are repaired in an RNase H2-dependent manner. In strains encoding a mutator allele of Pol ɛ (pol2-M644G), failure to remove rNMPs from DNA due to deletion of the RNH201 gene encoding the catalytic subunit of RNase H2, results in deletion of 2-5 base pairs in short repetitive sequences. Deletion rates depend on the orientation of the reporter gene relative to a nearby replication origin, suggesting that mutations result from rNMPs incorporated during replication. Here we demonstrate that 2-5 base pair deletion mutagenesis also strongly increases in rnh201Δ strains encoding wild type DNA polymerases. As in the pol2-M644G strains, the deletions occur at repetitive sequences and are orientation-dependent, suggesting that mismatches involving misaligned strands arise that could be subject to mismatch repair. Unexpectedly however, 2-5 base pair deletion rates resulting from loss of RNH201 in the pol2-M644G strain are unaffected by concomitant loss of MSH3, MSH6, or both. It could be that the mismatch repair machinery is unable to repair mismatches resulting from unrepaired rNMPs incorporated into DNA by M644G Pol ɛ, but this possibility is belied by the observation that Msh2-Msh6 can bind to a ribonucleotide-containing mismatch. Alternatively, following incorporation of rNMPs by M644G Pol ɛ during replication, the conversion of unrepaired rNMPs into mutations may occur outside the context of replication, e.g., during the repair of nicks resulting from rNMPs in DNA. The results make interesting predictions that can be tested.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , DNA Polimerase II/metabolismo , Instabilidade Genômica/genética , Ribonucleotídeos/metabolismo , Saccharomyces cerevisiae , Sequências de Repetição em Tandem/genética , Sequência de Bases , DNA Polimerase II/genética , Proteínas de Ligação a DNA/metabolismo , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA