Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 72(12): 1751-1765, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699387

RESUMO

Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS: Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Masculino , Feminino , Animais , Camundongos , NF-kappa B/metabolismo , Resistência à Insulina/genética , Caspase 8/genética , Caspase 8/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Knockout , Adipócitos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Glucose/metabolismo , Apoptose/genética
2.
Sci Rep ; 7(1): 7653, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794431

RESUMO

During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2-/-) mice gained less body weight compared to wildtype littermate control (M-JAK2+/+) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2-/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2-/- mice. Peritoneal macrophages from M-JAK2-/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.


Assuntos
Dieta Hiperlipídica , Inflamação/etiologia , Janus Quinase 2/deficiência , Macrófagos/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica , Hipertrofia , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo
3.
Nat Commun ; 8: 14360, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165007

RESUMO

Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess.


Assuntos
Adipócitos/fisiologia , Quinase 1 de Adesão Focal/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Células 3T3-L1 , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adiposidade/efeitos dos fármacos , Adiposidade/genética , Adulto , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Quinase 1 de Adesão Focal/genética , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/fisiopatologia , PPAR gama/agonistas , Cultura Primária de Células , Rosiglitazona , Transdução de Sinais/fisiologia , Tiazolidinedionas/farmacologia
4.
J Biol Chem ; 292(9): 3789-3799, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100771

RESUMO

Hepatocellular carcinoma is an end-stage complication of non-alcoholic fatty liver disease (NAFLD). Inflammation plays a critical role in the progression of non-alcoholic fatty liver disease and the development of hepatocellular carcinoma. However, whether steatosis per se promotes liver cancer, and the molecular mechanisms that control the progression in this disease spectrum remain largely elusive. The Janus kinase signal transducers and activators of transcription (JAK-STAT) pathway mediates signal transduction by numerous cytokines that regulate inflammation and may contribute to hepatocarcinogenesis. Mice with hepatocyte-specific deletion of JAK2 (L-JAK2 KO) develop extensive fatty liver spontaneously. We show here that this simple steatosis was insufficient to drive carcinogenesis. In fact, L-JAK2 KO mice were markedly protected from chemically induced tumor formation. Using the methionine choline-deficient dietary model to induce steatohepatitis, we found that steatohepatitis development was completely arrested in L-JAK2 KO mice despite the presence of steatosis, suggesting that JAK2 is the critical factor required for inflammatory progression in the liver. In line with this, L-JAK2 KO mice exhibited attenuated inflammation after chemical carcinogen challenge. This was associated with increased hepatocyte apoptosis without elevated compensatory proliferation, thus thwarting expansion of transformed hepatocytes. Taken together, our findings identify an indispensable role of JAK2 in hepatocarcinogenesis through regulating critical inflammatory pathways. Targeting the JAK-STAT pathway may provide a novel therapeutic option for the treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Proliferação de Células , Fígado Gorduroso/metabolismo , Deleção de Genes , Hepatócitos/metabolismo , Inflamação , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
Methods Mol Biol ; 1388: 75-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27033072

RESUMO

PTEN plays an important role in diabetes pathogenesis not only as a key negative regulator of the PI3K/Akt pathway required for insulin action, but also via its role in other cell processes required to maintain metabolic homeostasis. We describe the generation of tissue-specific PTEN knockout mice and models of both type 1 and type 2 diabetes, which we have found useful for the study of diabetes pathogenesis. We also outline common methods suitable for the characterization of glucose homeostasis in rodent models, including techniques to measure beta cell function and insulin sensitivity.


Assuntos
Diabetes Mellitus/metabolismo , Glucose/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Cristalografia por Raios X , Modelos Animais de Doenças , Homeostase , Humanos , Insulina/metabolismo , Camundongos
6.
Nat Commun ; 6: 7415, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077864

RESUMO

Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinson's disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders.


Assuntos
Metabolismo Energético/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas Oncogênicas/genética , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Linhagem Celular , Sobrevivência Celular , Diabetes Mellitus/genética , Dieta Hiperlipídica , Glucose/metabolismo , Glicólise/genética , Homeostase/genética , Immunoblotting , Resistência à Insulina/genética , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Obesidade/genética , Estresse Oxidativo , Consumo de Oxigênio , Proteína Desglicase DJ-1
7.
Diabetes ; 64(1): 90-103, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25048196

RESUMO

Obesity-related insulin resistance is associated with an influx of pathogenic T cells into visceral adipose tissue (VAT), but the mechanisms regulating lymphocyte balance in such tissues are unknown. Here we describe an important role for the immune cytotoxic effector molecule perforin in regulating this process. Perforin-deficient mice (Prf1(null)) show early increased body weight and adiposity, glucose intolerance, and insulin resistance when placed on high-fat diet (HFD). Regulatory effects of perforin on glucose tolerance are mechanistically linked to the control of T-cell proliferation and cytokine production in inflamed VAT. HFD-fed Prf1(null) mice have increased accumulation of proinflammatory IFN-γ-producing CD4(+) and CD8(+) T cells and M1-polarized macrophages in VAT. CD8(+) T cells from the VAT of Prf1(null) mice have increased proliferation and impaired early apoptosis, suggesting a role for perforin in the regulation of T-cell turnover during HFD feeding. Transfer of CD8(+) T cells from Prf1(null) mice into CD8-deficient mice (CD8(null)) resulted in worsening of metabolic parameters compared with wild-type donors. Improved metabolic parameters in HFD natural killer (NK) cell-deficient mice (NK(null)) ruled out a role for NK cells as a single source of perforin in regulating glucose homeostasis. The findings support the importance of T-cell function in insulin resistance and suggest that modulation of lymphocyte homeostasis in inflamed VAT is one possible avenue for therapeutic intervention.


Assuntos
Intolerância à Glucose/imunologia , Resistência à Insulina/imunologia , Gordura Intra-Abdominal/imunologia , Obesidade/imunologia , Paniculite/imunologia , Perforina/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Dieta Hiperlipídica , Células-Tronco Embrionárias/citologia , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Paniculite/genética , Paniculite/metabolismo , Perforina/genética , Perforina/metabolismo , Baço/citologia , Baço/imunologia
8.
Diabetes ; 64(1): 147-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25092678

RESUMO

An aberrant increase in circulating catabolic hormone glucagon contributes to type 2 diabetes pathogenesis. However, mechanisms regulating glucagon secretion and α-cell mass are not well understood. In this study, we aimed to demonstrate that phosphatidylinositol 3-kinase (PI3K) signaling is an important regulator of α-cell function. Mice with deletion of PTEN, a negative regulator of this pathway, in α-cells show reduced circulating glucagon levels and attenuated l-arginine-stimulated glucagon secretion both in vivo and in vitro. This hypoglucagonemic state is maintained after high-fat-diet feeding, leading to reduced expression of hepatic glycogenolytic and gluconeogenic genes. These beneficial effects protected high-fat diet-fed mice against hyperglycemia and insulin resistance. The data demonstrate an inhibitory role of PI3K signaling on α-cell function and provide experimental evidence for enhancing α-cell PI3K signaling for diabetes treatment.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/fisiologia , Glucagon/sangue , Resistência à Insulina/fisiologia , PTEN Fosfo-Hidrolase/genética , Animais , Arginina/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica , Feminino , Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia
9.
Diabetologia ; 57(12): 2555-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25249236

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus is characterised by beta cell loss and alpha cell expansion. Analogues of glucagon-like peptide-1 (GLP-1) are used therapeutically to antagonise these processes; thus, we hypothesised that the related cell cycle regulators retinoblastoma protein (Rb) and p107 were involved in GLP-1 action. METHODS: We used small interfering RNA and adenoviruses to manipulate Rb and p107 expression in insulinoma and alpha-TC cell lines. In vivo we examined pancreas-specific Rb knockout, whole-body p107 knockout and Rb/p107 double-knockout mice. RESULTS: Rb, but not p107, was downregulated in response to the GLP-1 analogue, exendin-4, in both alpha and beta cells. Intriguingly, this resulted in opposite outcomes of cell cycle arrest in alpha cells but proliferation in beta cells. Overexpression of Rb in alpha and beta cells abolished or attenuated the effects of exendin-4 supporting the important role of Rb in GLP-1 modulation of cell cycling. Similarly, in vivo, Rb, but not p107, deficiency was required for the beta cell proliferative response to exendin-4. Consistent with this finding, Rb, but not p107, was suppressed in islets from humans with diabetes, suggesting the importance of Rb regulation for the compensatory proliferation that occurs under insulin resistant conditions. Finally, while p107 alone did not have an essential role in islet homeostasis, when combined with Rb deletion, its absence potentiated apoptosis of both alpha and beta cells resulting in glucose intolerance and diminished islet mass with ageing. CONCLUSIONS/INTERPRETATION: We found a central role of Rb in the dual effects of GLP-1 in alpha and beta cells. Our findings highlight unique contributions of individual Rb family members to islet cell proliferation and survival.


Assuntos
Ciclo Celular/fisiologia , Sobrevivência Celular/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Exenatida , Células Secretoras de Glucagon/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Knockout , Peptídeos/farmacologia , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/genética , Peçonhas/farmacologia
10.
Diabetologia ; 57(9): 1889-98, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24981769

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus represents a significant burden on the health of the global population. Both type 1 and type 2 diabetes share a common feature of a reduction in functional beta cell mass. A newly discovered ubiquitination molecule HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase (HUWE1 [also known as MULE or ARF-BP1]) is a critical regulator of p53-dependent apoptosis. However, its role in islet homeostasis is not entirely clear. METHODS: We generated mice with pancreas-specific deletion of Huwe1 using a Cre-loxP recombination system driven by the Pdx1 promoter (Pdx1cre (+) Huwe1 (fl/fl)) to assess the in vivo role of HUWE1 in the pancreas. RESULTS: Targeted deletion of Huwe1 in the pancreas preferentially activated p53-mediated beta cell apoptosis, leading to reduced beta cell mass and diminished insulin exocytosis. These defects were aggravated by ageing, with progressive further decline in insulin secretion and glucose homeostasis in older mice. Intriguingly, Huwe1 deletion provided protection against genotoxicity, such that Pdx1cre (+) Huwe1 (fl/fl) mice were resistant to multiple-low-dose-streptozotocin-induced beta cell apoptosis and diabetes. CONCLUSION/INTERPRETATION: HUWE1 expression in the pancreas is essential in determining beta cell mass. Furthermore, HUWE1 demonstrated divergent roles in regulating beta cell apoptosis depending on physiological or genotoxic conditions.


Assuntos
Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Mutantes , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética
11.
Nat Med ; 20(5): 484-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24747746

RESUMO

Inflammation has a critical role in the development of insulin resistance. Recent evidence points to a contribution by the central nervous system in the modulation of peripheral inflammation through the anti-inflammatory reflex. However, the importance of this phenomenon remains elusive in type 2 diabetes pathogenesis. Here we show that rat insulin-2 promoter (Rip)-mediated deletion of Pten, a gene encoding a negative regulator of PI3K signaling, led to activation of the cholinergic anti-inflammatory pathway that is mediated by M2 activated macrophages in peripheral tissues. As such, Rip-cre(+) Pten(flox/flox) mice showed lower systemic inflammation and greater insulin sensitivity under basal conditions compared to littermate controls, which were abolished when the mice were treated with an acetylcholine receptor antagonist or when macrophages were depleted. After feeding with a high-fat diet, the Pten-deleted mice remained markedly insulin sensitive, which correlated with massive subcutaneous fat expansion. They also exhibited more adipogenesis with M2 macrophage infiltration, both of which were abolished after disruption of the anti-inflammatory efferent pathway by left vagotomy. In summary, we show that Pten expression in Rip(+) neurons has a critical role in diabetes pathogenesis through mediating the anti-inflammatory reflex.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Inflamação/metabolismo , Insulina/genética , PTEN Fosfo-Hidrolase/genética , Animais , Anti-Inflamatórios/administração & dosagem , Sistema Nervoso Central/metabolismo , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Insulina/metabolismo , Resistência à Insulina/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , PTEN Fosfo-Hidrolase/metabolismo , Regiões Promotoras Genéticas , Ratos , Receptores Muscarínicos/administração & dosagem , Deleção de Sequência , Transdução de Sinais
12.
Diabetes ; 61(7): 1708-18, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22498697

RESUMO

Focal adhesion kinase (FAK) acts as an adaptor at the focal contacts serving as a junction between the extracellular matrix and actin cytoskeleton. Actin dynamics is known as a determinant step in insulin secretion. Additionally, FAK has been shown to regulate insulin signaling. To investigate the essential physiological role of FAK in pancreatic ß-cells in vivo, we generated a transgenic mouse model using rat insulin promoter (RIP)-driven Cre-loxP recombination system to specifically delete FAK in pancreatic ß-cells. These RIPcre(+)fak(fl/fl) mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced ß-cell viability and proliferation resulting in decreased ß-cell mass was observed in these mice, which was associated with attenuated insulin/Akt (also known as protein kinase B) and extracellular signal-related kinase 1/2 signaling and increased caspase 3 activation. FAK-deficient ß-cells exhibited impaired insulin secretion with normal glucose sensing and preserved Ca(2+) influx in response to glucose, but a reduced number of docked insulin granules and insulin exocytosis were found, which was associated with a decrease in focal proteins, paxillin and talin, and an impairment in actin depolymerization. This study is the first to show in vivo that FAK is critical for pancreatic ß-cell viability and function through regulation in insulin signaling, actin dynamics, and granule trafficking.


Assuntos
Citoesqueleto de Actina/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Cálcio/metabolismo , Caspase 3/biossíntese , Sobrevivência Celular , Exocitose , Feminino , Quinase 1 de Adesão Focal/genética , Intolerância à Glucose/genética , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Paxilina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Talina/metabolismo , Vesículas Transportadoras/metabolismo
13.
Endocr Pract ; 18(5): e121-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22441009

RESUMO

OBJECTIVE: To describe the case of a patient with an unusual plurihormonal pituitary adenoma with immunoreactivity for thyroid-stimulating hormone (TSH), growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. METHODS: We report the clinical, laboratory, imaging, and pathology findings of a patient symptomatic from a plurihormonal pituitary adenoma and describe her outcome after surgical treatment. RESULTS: A 60-year-old woman presented to the emergency department with headaches, blurry vision, fatigue, palpitations, sweaty hands, and weight loss. Her medical history was notable for hyperthyroidism, treated intermittently with methimazole. Magnetic resonance imaging disclosed a pituitary macroadenoma (2.3 by 2.2 by 2.0 cm), and preoperative blood studies revealed elevated levels of TSH at 6.11 mIU/L, free thyroxine at 3.6 ng/dL, and free triiodothyronine at 6.0 pg/mL. She underwent an uncomplicated transsphenoidal resection of the pituitary adenoma. Immunostaining of tumor tissue demonstrated positivity for not only TSH but also growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. The Ki-67 index of the tumor was estimated at 2% to 5%, and DNA repair enzyme O6-methylguanine-DNA methyltransferase immunostaining was mostly negative. Electron microscopy showed the ultrastructural phenotype of a glycoprotein-producing adenoma. Postoperatively, her symptoms and hyperthyroidism resolved. CONCLUSION: Thyrotropin-secreting pituitary adenomas are rare. Furthermore, recent reports suggest that 31% to 36% of adenomas may show evidence of secretion of multiple pituitary hormones. This case emphasizes the importance of considering pituitary causes of thyrotoxicosis and summarizes the clinical and pathology findings in a patient with a plurihormonal pituitary adenoma.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Hormônio do Crescimento/metabolismo , Neoplasias Hipofisárias/metabolismo , Prolactina/metabolismo , Tireotropina/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Hipofisárias/cirurgia
14.
Mol Endocrinol ; 18(6): 1333-45, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14976221

RESUMO

Leptin has been shown to improve insulin sensitivity and glucose metabolism in obese diabetic ob/ob mice, yet the mechanisms remain poorly defined. We found that 2 d of leptin treatment improved fasting but not postprandial glucose homeostasis, suggesting enhanced hepatic insulin sensitivity. Consistent with this hypothesis, leptin improved in vivo insulin receptor (IR) activation in liver, but not in skeletal muscle or fat. To explore the cellular mechanism by which leptin up-regulates hepatic IR activation, we examined the expression of the protein tyrosine phosphatase PTP1B, recently implicated as an important negative regulator of insulin signaling. Unexpectedly, liver PTP1B protein abundance was increased by leptin to levels similar to lean controls, whereas levels in muscle and fat remained unchanged. The ability of leptin to augment liver IR activation and PTP1B expression was also observed in vitro in human hepatoma cells (HepG2). However, overexpression of PTP1B in HepG2 cells led to diminished insulin-induced IR phosphorylation, supporting the role of PTP1B as a negative regulator of IR activation in hepatocytes. Collectively, our results suggest that leptin acutely improves hepatic insulin sensitivity in vivo with concomitant increases in PTP1B expression possibly serving to counterregulate insulin action and to maintain insulin signaling in proper balance.


Assuntos
Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Adenoviridae/genética , Animais , Glicemia/metabolismo , Peso Corporal , Células CHO , Linhagem Celular , Cricetinae , Glucose/metabolismo , Teste de Tolerância a Glucose , Hepatócitos/metabolismo , Humanos , Immunoblotting , Secreção de Insulina , Camundongos , Camundongos Obesos , Músculo Esquelético/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Receptor de Insulina/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores para Leptina , Transdução de Sinais , Fatores de Tempo , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA