Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 12(12): 1064-71, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299513

RESUMO

The histone variant H2AZ is incorporated preferentially at specific locations in chromatin to modulate chromosome functions. In Saccharomyces cerevisiae, deposition of histone H2AZ is mediated by the multiprotein SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Here, we define interactions between SWR1 components and H2AZ, revealing a link between the ATPase domain of Swr1 and three subunits required for the binding of H2AZ. We discovered that Swc2 binds directly to and is essential for transfer of H2AZ. Swc6 and Arp6 are necessary for the association of Swc2 and for nucleosome binding, whereas other subunits, Swc5 and Yaf9, are required for H2AZ transfer but neither H2AZ nor nucleosome binding. Finally, the C-terminal alpha-helix of H2AZ is crucial for its recognition by SWR1. These findings provide insight on the initial events of histone exchange.


Assuntos
Adenosina Trifosfatases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Histonas/química , Histonas/genética , Dados de Sequência Molecular , Mutação , Nucleossomos/metabolismo , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 280(24): 22715-20, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15851472

RESUMO

Manganese-dependent superoxide dismutase 2 (SOD2) in the mitochondria plays a key role in protection against oxidative stress. Here we probed the pathway by which SOD2 acquires its manganese catalytic cofactor. We found that a mitochondrial localization is essential. A cytosolic version of Saccharomyces cerevisiae Sod2p is largely apo for manganese and is only efficiently activated when cells accumulate toxic levels of manganese. Furthermore, Candida albicans naturally produces a cytosolic manganese SOD (Ca SOD3), yet when expressed in the cytosol of S. cerevisiae, a large fraction of Ca SOD3 also remained manganese-deficient. The cytosol of S. cerevisae cannot readily support activation of Mn-SOD molecules. By monitoring the kinetics for metalation of S. cerevisiae Sod2p in vivo, we found that prefolded Sod2p in the mitochondria cannot be activated by manganese. Manganese insertion is only possible with a newly synthesized polypeptide. Furthermore, Sod2p synthesis appears closely coupled to Sod2p import. By reversibly blocking mitochondrial import in vivo, we noted that newly synthesized Sod2p can enter mitochondria but not a Sod2p polypeptide that was allowed to accumulate in the cytosol. We propose a model in which the insertion of manganese into eukaryotic SOD2 molecules is driven by the protein unfolding process associated with mitochondrial import.


Assuntos
Manganês/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/enzimologia , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Candida albicans/enzimologia , Citosol/metabolismo , Ativação Enzimática , Escherichia coli/metabolismo , Humanos , Cinética , Manganês/química , Modelos Biológicos , Dados de Sequência Molecular , Estresse Oxidativo , Peptídeos/química , Plasmídeos/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 100(18): 10353-7, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12890866

RESUMO

Manganese-containing superoxide dismutase (SOD2) plays a critical role in guarding against mitochondrial oxidative stress and is essential for survival of many organisms. Despite the recognized importance of SOD2, nothing is known regarding the mechanisms by which this nuclear-encoded protein is converted to an active enzyme in the mitochondrial matrix. To search for factors that participate in the posttranslational activation of SOD2, we screened for yeast genes that when mutated lead to SOD2 inactivation and identified a single ORF, YGR257c. The encoded protein localizes to the mitochondria and represents a member of the yeast mitochondrial carrier family. YGR257c was previously recognized as the homologue to human CGI-69, a widely expressed mitochondrial carrier family of unknown function. Our studies suggest a connection with SOD2, and we have named the yeast gene MTM1 for manganese trafficking factor for mitochondrial SOD2. Inactivation of yeast MTM1 leads to loss of SOD2 activity that is restored only when cells are treated with high supplements of manganese, but not other heavy metals, indicative of manganese deficiency in the SOD2 polypeptide. Surprisingly, the mitochondrial organelle of mtm1 Delta mutants shows no deficiency in manganese levels. Moreover, mtm1 Delta mutations do not impair activity of a cytosolic version of manganese SOD. We propose that Mtm1p functions in the mitochondrial activation of SOD2 by specifically facilitating insertion of the essential manganese cofactor.


Assuntos
Manganês/farmacologia , Proteínas Mitocondriais/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Superóxido Dismutase/fisiologia , Ativação Enzimática , Mitocôndrias/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA