Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 17(12): 4010-4028, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33779490

RESUMO

Myotubularin (MTM) and myotubularin-related (MTMR) lipid phosphatases catalyze the removal of a phosphate group from certain phosphatidylinositol derivatives. Because some of these substrates are required for macroautophagy/autophagy, during which unwanted cytoplasmic constituents are delivered into lysosomes for degradation, MTM and MTMRs function as important regulators of the autophagic process. Despite its physiological and medical significance, the specific role of individual MTMR paralogs in autophagy control remains largely unexplored. Here we examined two Drosophila MTMRs, EDTP and Mtmr6, the fly orthologs of mammalian MTMR14 and MTMR6 to MTMR8, respectively, and found that these enzymes affect the autophagic process in a complex, condition-dependent way. EDTP inhibited basal autophagy, but did not influence stress-induced autophagy. In contrast, Mtmr6 promoted the process under nutrient-rich settings, but effectively blocked its hyperactivation in response to stress. Thus, Mtmr6 is the first identified MTMR phosphatase with dual, antagonistic roles in the regulation of autophagy, and shows conditional antagonism/synergism with EDTP in modulating autophagic breakdown. These results provide a deeper insight into the adjustment of autophagy.Abbreviations: Atg, autophagy-related; BDSC, Bloomington Drosophila Stock Center; DGRC, Drosophila Genetic Resource Center; EDTP, Egg-derived tyrosine phosphatase; FYVE, zinc finger domain from Fab1 (yeast ortholog of PIKfyve), YOTB, Vac1 (vesicle transport protein) and EEA1 cysteine-rich proteins; LTR, LysoTracker Red; MTM, myotubularin; MTMR, myotubularin-related; PI, phosphatidylinositol; Pi3K59F, Phosphotidylinositol 3 kinase 59F; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(3,5)P2, phosphatidylinositol-3,5-bisphosphate; PtdIns5P, phosphatidylinositol-5-phosphate; ref(2)P, refractory to sigma P; Syx17, Syntaxin 17; TEM, transmission electron microscopy; UAS, upstream activating sequence; Uvrag, UV-resistance associated gene; VDRC, Vienna Drosophila RNAi Center; Vps34, Vacuolar protein sorting 34.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Autofagia/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
2.
Hum Mol Genet ; 29(4): 674-688, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31943010

RESUMO

Huntington's disease (HD) is caused by an expansion of a poly glutamine (polyQ) stretch in the huntingtin protein (HTT) that is necessary to cause pathology and formation of HTT aggregates. Here we ask whether expanded polyQ is sufficient to cause pathology and aggregate formation. By addressing the sufficiency question, one can identify cellular processes and structural parameters that influence HD pathology and HTT subcellular behavior (i.e. aggregation state and subcellular location). Using Drosophila, we compare the effects of expressing mutant full-length human HTT (fl-mHTT) to the effects of mutant human HTTexon1 and to two commonly used synthetic fragments, HTT171 and shortstop (HTT118). Expanded polyQ alone is not sufficient to cause inclusion formation since full-length HTT and HTTex1 with expanded polyQ are both toxic although full-length HTT remains diffuse while HTTex1 forms inclusions. Further, inclusions are not sufficient to cause pathology since HTT171-120Q forms inclusions but is benign and co-expression of HTT171-120Q with non-aggregating pathogenic fl-mHTT recruits fl-mHTT to aggregates and rescues its pathogenicity. Additionally, the influence of sequences outside the expanded polyQ domain is revealed by finding that small modifications to the HTT118 or HTT171 fragments can dramatically alter their subcellular behavior and pathogenicity. Finally, mutant HTT subcellular behavior is strongly modified by different cell and tissue environments (e.g. fl-mHTT appears as diffuse nuclear in one tissue and diffuse cytoplasmic in another but toxic in both). These observations underscore the importance of cellular and structural context for the interpretation and comparison of experiments using different fragments and tissues to report the effects of expanded polyQ.


Assuntos
Núcleo Celular/patologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteína Huntingtina/genética , Mutação , Neurônios/patologia , Peptídeos/genética , Traqueia/patologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Corpos de Inclusão , Masculino , Neurônios/metabolismo , Traqueia/metabolismo
3.
Dev Biol ; 445(1): 37-53, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30539716

RESUMO

Analysis of mutants that affect formation and function of the Drosophila larval neuromuscular junction (NMJ) has provided valuable insight into genes required for neuronal branching and synaptic growth. We report that NMJ development in Drosophila requires both the Drosophila ortholog of FNDC3 genes; CG42389 (herein referred to as miles to go; mtgo), and CCT3, which encodes a chaperonin complex subunit. Loss of mtgo function causes late pupal lethality with most animals unable to escape the pupal case, while rare escapers exhibit an ataxic gait and reduced lifespan. NMJs in mtgo mutant larvae have dramatically reduced branching and growth and fewer synaptic boutons compared with control animals. Mutant larvae show normal locomotion but display an abnormal self-righting response and chemosensory deficits that suggest additional functions of mtgo within the nervous system. The pharate lethality in mtgo mutants can be rescued by both low-level pan- and neuronal-, but not muscle-specific expression of a mtgo transgene, supporting a neuronal-intrinsic requirement for mtgo in NMJ development. Mtgo encodes three similar proteins whose domain structure is most closely related to the vertebrate intracellular cytosolic membrane-anchored fibronectin type-III domain-containing protein 3 (FNDC3) protein family. Mtgo physically and genetically interacts with Drosophila CCT3, which encodes a subunit of the TRiC/CCT chaperonin complex required for maturation of actin, tubulin and other substrates. Drosophila larvae heterozygous for a mutation in CCT3 that reduces binding between CCT3 and MTGO also show abnormal NMJ development similar to that observed in mtgo null mutants. Hence, the intracellular FNDC3-ortholog MTGO and CCT3 can form a macromolecular complex, and are both required for NMJ development in Drosophila.


Assuntos
Chaperonina com TCP-1/metabolismo , Proteínas de Drosophila/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Alelos , Animais , Axônios/fisiologia , Chaperonina com TCP-1/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Larva , Mutação , Junção Neuromuscular/enzimologia , Junção Neuromuscular/genética , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
4.
Cell Biol Int ; 40(6): 696-707, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27006187

RESUMO

Ezrin-Radixin-Moesin proteins are highly conserved, actin-binding cytoskeletal proteins that play an essential role in microvilli formation, T-cell activation, and tumor metastasis by linking actin filaments to the plasma membrane. Recent studies demonstrated that the only Ezrin-Radixin-Moesin protein of Drosophila melanogaster, Moesin, is involved in mitotic spindle function through stabilizing cell shape and microtubules at the cell cortex. We previously observed that Moesin localizes to the mitotic spindle; hence, we tested for the biological significance of this surprising localization and investigated whether it plays a direct role in spindle function. To separate the cortical and spindle functions of Moesin during mitosis we combined cell biological and genetic methods. We used early Drosophila embryos, in which mitosis occurs in the absence of a cell cortex, and found in vivo evidence for the direct requirement of Moesin in mitotic spindle assembly and function. We also found that the accumulation of Moesin precedes the construction of the microtubule spindle, and the fusiform structure formed by Moesin persists even after the microtubules have disassembled.


Assuntos
Proteínas de Membrana/metabolismo , Fuso Acromático/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Ciclo Celular/fisiologia , Forma Celular/fisiologia , Citoplasma/metabolismo , Drosophila melanogaster , Proteínas de Membrana/genética , Microtúbulos/metabolismo , Mitose/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
5.
J Innate Immun ; 7(4): 340-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659341

RESUMO

We identified and characterized a so far unrecognized cell type, dubbed the multinucleated giant hemocyte (MGH), in the ananassae subgroup of Drosophilidae. Here, we describe the functional and ultrastructural characteristics of this novel blood cell type as well as its characterization with a set of discriminative immunological markers. MGHs are encapsulating cells that isolate and kill the parasite without melanization. They share some properties with but differ considerably from lamellocytes, the encapsulating cells of Drosophila melanogaster, the broadly used model organism in studies of innate immunity. MGHs are nonproliferative effector cells that are derived from phagocytic cells of the sessile tissue and the circulation, but do not exhibit phagocytic activity. In contrast to lamellocytes, MGHs are gigantic cells with filamentous projections and contain many nuclei, which are the result of the fusion of several cells. Although the structure of lamellocytes and MGHs differ remarkably, their function in the elimination of parasites is similar, which is potentially the result of the convergent evolution of interactions between hosts and parasites in different geographic regions. MGHs are highly motile and share several features with mammalian multinucleated giant cells, a syncytium of macrophages formed during granulomatous inflammation.


Assuntos
Movimento Celular/imunologia , Células Gigantes/imunologia , Imunidade Celular , Fagocitose , Animais , Drosophila , Células Gigantes/citologia , Hemócitos
6.
Hum Mol Genet ; 24(4): 913-25, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305076

RESUMO

Although Huntington's disease is caused by the expansion of a CAG triplet repeat within the context of the 3144-amino acid huntingtin protein (HTT), studies reveal that N-terminal fragments of HTT containing the expanded PolyQ region can be produced by proteolytic processing and/or aberrant splicing. N-terminal HTT fragments are also prevalent in postmortem tissue, and expression of some of these fragments in model organisms can cause pathology. This has led to the hypothesis that N-terminal peptides may be critical modulators of disease pathology, raising the possibility that targeting aberrant splicing or proteolytic processing may present attractive therapeutic targets. However, many factors can contribute to pathology, including genetic background and differential expression of transgenes, in addition to intrinsic differences between fragments and their cellular effects. We have used Drosophila as a model system to determine the relative toxicities of different naturally occurring huntingtin fragments in a system in which genetic background, transgene expression levels and post-translational proteolytic processing can be controlled. These studies reveal that among the naturally occurring N-terminal HTT peptides, the exon 1 peptide is exceptionally pathogenic and exhibits unique structural and biophysical behaviors that do not appear to be incremental changes compared with other fragments. If this proves correct, efforts to specifically reduce the levels of exon 1 peptides or to target toxicity-influencing post-translational modifications that occur with the exon 1 context are likely to have the greatest impact on pathology.


Assuntos
Éxons , Doença de Huntington/genética , Proteínas Associadas aos Microtúbulos/genética , Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila , Expressão Gênica , Humanos , Proteína Huntingtina , Masculino , Proteínas Associadas aos Microtúbulos/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Agregação Patológica de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteólise
7.
Hum Mol Genet ; 23(11): 2995-3007, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24436303

RESUMO

Protein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available. SirT1 (Sir2 in Drosophila melanogaster) deacetylates histones and other proteins including transcription factors. Genetically reducing, but not eliminating, Sir2 has been shown to suppress HD pathology in model organisms. To date, small molecule inhibitors of sirtuins have exhibited low potency and unattractive pharmacological and biopharmaceutical properties. Here, we show that highly selective pharmacological inhibition of Drosophila Sir2 and mammalian SirT1 using the novel inhibitor selisistat (selisistat; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) can suppress HD pathology caused by mutant huntingtin exon 1 fragments in Drosophila, mammalian cells and mice. We have validated Sir2 as the in vivo target of selisistat by showing that genetic elimination of Sir2 eradicates the effect of this inhibitor in Drosophila. The specificity of selisistat is shown by its effect on recombinant sirtuins in mammalian cells. Reduction of HD pathology by selisistat in Drosophila, mammalian cells and mouse models of HD suggests that this inhibitor has potential as an effective therapeutic treatment for human disease and may also serve as a tool to better understand the downstream pathways of SirT1/Sir2 that may be critical for HD.


Assuntos
Carbazóis/administração & dosagem , Proteínas de Drosophila/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Doença de Huntington/tratamento farmacológico , Doença de Huntington/enzimologia , Sirtuína 1/antagonistas & inibidores , Sirtuínas/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
8.
Methods Mol Biol ; 1017: 41-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23719906

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The HD gene encodes the huntingtin protein (HTT) that contains polyglutamine tracts of variable length. Expansions of the CAG repeat near the amino terminus to encode 40 or more glutamines (polyQ) lead to disease. At least eight other expanded polyQ diseases have been described. HD can be faithfully modeled in Drosophila with the key features of the disease such as late onset, slowly progressing degeneration, formation of abnormal protein aggregates and the dependence on polyQ length being evident. Such invertebrate model organisms provide powerful platforms to explore neurodegenerative mechanisms and to productively speed the identification of targets and agents that are likely to be effective at treating diseases in humans. Here we describe an optical pseudopupil method that can be readily quantified to provide a fast and sensitive assay for assessing the degree of HD neurodegeneration in vivo. We discuss detailed crossing schemes as well as factors including different drivers, various constructs, the number of UAS sites, genetic background, and temperature that can influence the result of pseudopupil measurements.


Assuntos
Modelos Animais de Doenças , Doença de Huntington , Peptídeos , Animais , Cruzamentos Genéticos , Drosophila melanogaster , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Peptídeos/genética , Peptídeos/metabolismo
9.
Biophys J ; 98(12): 3078-85, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20550921

RESUMO

Protein aggregation is a hallmark of several neurodegenerative diseases including Huntington's disease. We describe the use of the recently developed number and brightness method (N&B) that uses confocal images to monitor aggregation of Huntingtin exon 1 protein (Httex1p) directly in living cells. N&B measures the molecular brightness of protein aggregates in the entire cell noninvasively based on intensity fluctuations at each pixel in an image. N&B applied to mutant Httex1p in living cells showed a two-step pathway leading to inclusion formation that is polyQ length dependent and involves four phases. An initial phase of monomer accumulation is followed by formation of small oligomers (5-15 proteins); as protein concentration increases, an inclusion is seeded and forms in the cytoplasm; the growing inclusion recruits most of the Httex1p and depletes the cell leaving only a low concentration of monomers. The behavior of Httex1p in COS-7 and ST14A cells is compared.


Assuntos
Imagem Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Animais , Células COS , Calibragem , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína Huntingtina , Microscopia Confocal , Proteínas Nucleares , Peptídeos/metabolismo , Estrutura Quaternária de Proteína , Ratos
10.
J Biol Chem ; 284(43): 29427-36, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19710014

RESUMO

Huntingtin (Htt) is a widely expressed protein that causes tissue-specific degeneration when mutated to contain an expanded polyglutamine (poly(Q)) domain. Although Htt is large, 350 kDa, the appearance of amino-terminal fragments of Htt in extracts of postmortem brain tissue from patients with Huntington disease (HD), and the fact that an amino-terminal fragment, Htt exon 1 protein (Httex1p), is sufficient to cause disease in models of HD, points to the importance of the amino-terminal region of Htt in the disease process. The first exon of Htt encodes 17 amino acids followed by a poly(Q) repeat of variable length and culminating with a proline-rich domain of 50 amino acids. Because modifications to this fragment have the potential to directly affect pathogenesis in several ways, we have surveyed this fragment for potential post-translational modifications that might affect Htt behavior and detected several modifications of Httex1p. Here we report that the most prevalent modifications of Httex1p are NH(2)-terminal acetylation and phosphorylation of threonine 3 (pThr-3). We demonstrate that pThr-3 occurs on full-length Htt in vivo, and that this modification affects the aggregation and pathogenic properties of Htt. Thus, therapeutic strategies that modulate these events could in turn affect Htt pathogenesis.


Assuntos
Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Treonina/metabolismo , Acetilação , Células HeLa , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Treonina/química , Treonina/genética
11.
J Biol Chem ; 284(12): 7431-5, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18957429

RESUMO

The dominant gain-of-function polyglutamine repeat diseases, in which the initiating mutation is known, allow development of models that recapitulate many aspects of human disease. To the extent that pathology is a consequence of disrupted fundamental cellular activities, one can effectively study strategies to ameliorate or protect against these cellular insults. Model organisms allow one to identify pathways that affect disease onset and progression, to test and screen for pharmacological agents that affect pathogenic processes, and to validate potential targets genetically as well as pharmacologically. Here, we describe polyglutamine repeat diseases that have been modeled in a variety of organisms, including worms, flies, mice, and non-human primates, and discuss examples of how they have broadened the therapeutic landscape.


Assuntos
Modelos Animais de Doenças , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Peptídeos/genética , Animais , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/terapia , Humanos , Peptídeos/metabolismo
12.
Math Biosci Eng ; 5(2): 277-98, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18613734

RESUMO

In this paper, we consider a mathematical model for the formation of spatial morphogen territories of two key morphogens: Wingless (Wg) and Decapentaplegic (DPP), involved in leg development of Drosophila. We define a gene regulatory network (GRN) that utilizes autoactivation and cros-sinhibition (modeled by Hill equations) to establish and maintain stable boundaries of gene expression. By computational analysis we find that in the presence of a general activator, neither autoactivation, nor cross-inhibition alone are sufficient to maintain stable sharp boundaries of morphogen production in the leg disc. The minimal requirements for a self-organizing system are a coupled system of two morphogens in which the autoactivation and cross-inhibition have Hill coefficients strictly greater than one. In addition, the GRN modeled here describes the regenerative responses to genetic manipulations of positional identity in the leg disc.


Assuntos
Drosophila/embriologia , Regulação da Expressão Gênica , Algoritmos , Animais , Difusão , Drosophila/genética , Proteínas de Drosophila/metabolismo , Extremidades/embriologia , Retroalimentação Fisiológica , Modelos Biológicos , Modelos Estatísticos , Modelos Teóricos , Transdução de Sinais , Software , Proteína Wnt1/metabolismo
13.
PLoS One ; 2(1): e142, 2007 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-17206277

RESUMO

BACKGROUND: Spatially restricted morphogen expression drives many patterning and regeneration processes, but how is the pattern of morphogen expression established and maintained? Patterning of Drosophila leg imaginal discs requires expression of the DPP morphogen dorsally and the wingless (WG) morphogen ventrally. We have shown that these mutually exclusive patterns of expression are controlled by a self-organizing system of feedback loops that involve WG and DPP, but whether the feedback is direct or indirect is not known. METHODS/FINDINGS: By analyzing expression patterns of regulatory DNA driving reporter genes in different genetic backgrounds, we identify a key component of this system by showing that WG directly represses transcription of the dpp gene in the ventral leg disc. Repression of dpp requires a tri-partite complex of the WG mediators armadillo (ARM) and dTCF, and the co-repressor Brinker, (BRK), wherein ARM.dTCF and BRK bind to independent sites within the dpp locus. CONCLUSIONS/SIGNIFICANCE: Many examples of dTCF repression in the absence of WNT signaling have been described, but few examples of signal-driven repression requiring both ARM and dTCF binding have been reported. Thus, our findings represent a new mode of WG mediated repression and demonstrate that direct regulation between morphogen signaling pathways can contribute to a robust self-organizing system capable of dynamically maintaining territories of morphogen expression.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteína Wnt1/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Padronização Corporal/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Elementos Facilitadores Genéticos , Genes Reporter , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Proteína Wnt1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA