Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 87(11): 7064-7075, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35583492

RESUMO

The ability of [1,2,3]triazolobenzoxazinones to act as a source of "hidden" diazo group was discovered. These diazo precursors can be easily prepared by the intramolecular cyclization of 2-(5-iodo-1,2,3-triazolyl)benzoic acids. The Cu-catalyzed capture of the hidden diazo group allows for further functionalization through the denitrogenative pathway. The transformations proceed via the formation of either diazoimine or diazoamide intermediates. Novel routes to various anthranilamides as well as thiolated benzoxazinones were developed using the one-pot cyclization/diazo capture procedure.

2.
J Org Chem ; 86(8): 5639-5650, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33822625

RESUMO

A straightforward domino approach to assemble benzoxazole-derived sulfonamides has been developed. The method is based on annulation-induced in situ generation of diazo compounds from readily available 2-(5-iodo-1,2,3-triazolyl)phenols, followed by metal-free denitrogenative transformation upon the action of 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO) and amines. The protocol is operationally simple and features a broad substrate scope, furnishing a library of target compounds in generally good yields.

3.
Colloids Surf B Biointerfaces ; 190: 110906, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32126360

RESUMO

A novel strategy is described for preparing pH-sensitive liposomes which releases the encapsulated drug in response to the change in pH of surrounding solution. The liposomes, composed of conventional zwitter-ionic egg yolk lecithin (EL), additionally contains a pH-sensitive "activator" (AMS), a derivative of lithocholic acid with anionic and cationic groups attached to the opposite ends of the steroid core. AMS changes its orientation in the liposomal membrane thus adapting to acidity/basicity of the outer solution. The rotation of AMS induces disordering of the membrane and a fast release of the bioactive cargo. In particular, 50-60 % of the encapsulated antitumor drug, doxorubicin and cisplatin, leaks from the liposomes within the first minute after acidification of the surrounding solution. Low-toxic EL-AMS liposomes, loaded with doxorubicin, show themselves active towards multidrug resistant cells. Fast-acting and low-toxic EL-AMS liposomes can be used in the design of smart liposomal containers in the drug delivery field.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Lecitinas/química , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Galinhas , Cisplatino/química , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Gema de Ovo/química , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Células MCF-7 , Conformação Molecular , Relação Estrutura-Atividade
4.
Sci Rep ; 10(1): 1886, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024885

RESUMO

The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid ß-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of ß-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Cetona Oxirredutases/metabolismo , Lisina/análogos & derivados , Niacina/metabolismo , Adipatos/química , Adipatos/metabolismo , Animais , Ensaios Enzimáticos , Humanos , Lisina/química , Lisina/metabolismo , Células MCF-7 , Masculino , Niacina/química , Oxirredução , Fosforilação , RNA-Seq , Ratos
5.
Front Chem ; 8: 596187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511099

RESUMO

Phosphonate analogs of pyruvate and 2-oxoglutarate are established specific inhibitors of cognate 2-oxo acid dehydrogenases. The present work develops application of this class of compounds to specific in vivo inhibition of 2-oxoglutarate dehydrogenase (OGDH) and its isoenzyme, 2-oxoadipate dehydrogenase (OADH). The isoenzymes-enriched preparations from the rat tissues with different expression of OADH and OGDH are used to characterize their interaction with 2-oxoglutarate (OG), 2-oxoadipate (OA) and the phosphonate analogs. Despite a 100-fold difference in the isoenzymes ratio in the heart and liver, similar Michaelis saturations by OG are inherent in the enzyme preparations from these tissues ( K m O G = 0.45 ± 0.06 and 0.27 ± 0.026 mM, respectively), indicating no significant contribution of OADH to the OGDH reaction, or similar affinities of the isoenzymes to OG. However, the preparations differ in the catalysis of OADH reaction. The heart preparation, where OADH/OGDH ratio is ≈ 0.01, possesses low-affinity sites to OA ( K m O A = 0.55 ± 0.07 mM). The liver preparation, where OADH/OGDH ratio is ≈ 1.6, demonstrates a biphasic saturation with OA: the low-affinity sites ( K m , 2 O A = 0.45 ± 0.12 mM) are similar to those of the heart preparation; the high-affinity sites ( K m , 1 O A = 0.008 ± 0.001 mM), revealed in the liver preparation only, are attributed to OADH. Phosphonate analogs of C5-C7 dicarboxylic 2-oxo acids inhibit OGDH and OADH competitively to 2-oxo substrates in all sites. The high-affinity sites for OA are affected the least by the C5 analog (succinyl phosphonate) and the most by the C7 one (adipoyl phosphonate). The opposite reactivity is inherent in both the low-affinity OA-binding sites and OG-binding sites. The C6 analog (glutaryl phosphonate) does not exhibit a significant preference to either OADH or OGDH. Structural analysis of the phosphonates binding to OADH and OGDH reveals the substitution of a tyrosine residue in OGDH for a serine residue in OADH among structural determinants of the preferential binding of the bulkier ligands to OADH. The consistent kinetic and structural results expose adipoyl phosphonate as a valuable pharmacological tool for specific in vivo inhibition of the DHTKD1-encoded OADH, a new member of mammalian family of 2-oxo acid dehydrogenases, up-regulated in some cancers and associated with diabetes and obesity.

6.
Org Lett ; 20(15): 4467-4470, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30040429

RESUMO

Base-mediated cyclization of (5-iodo-1,2,3-triazolyl)phenols was proposed as a new synthetic strategy for the in situ generation of diazoimines via electrocyclic ring opening of the fused heterocycle. Cu-catalyzed amination of the intermediate diazoalkanes was employed to develop an efficient cascade approach to functionalized benzoxazoles.

7.
Oncotarget ; 6(37): 40036-52, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26503465

RESUMO

The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 µM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 µM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition.


Assuntos
Metaboloma/efeitos dos fármacos , Ácidos Fosfínicos/farmacologia , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Piruvatos/farmacologia , Alameticina/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HEK293 , Humanos , Cinética , Metaboloma/genética , Metabolômica/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Ácidos Fosfínicos/síntese química , Ácidos Fosfínicos/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Piruvatos/química , Piruvatos/metabolismo , Ratos Wistar
8.
Cells ; 4(3): 427-51, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26308058

RESUMO

Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.

9.
FEBS J ; 280(24): 6412-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24004353

RESUMO

Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed.


Assuntos
Modelos Animais de Doenças , Desenho de Fármacos , Enzimas/metabolismo , Metabolismo/fisiologia , Tiamina Pirofosfato/metabolismo , Animais , Enzimas/química , Humanos , Tiamina Pirofosfato/química
10.
Org Biomol Chem ; 9(13): 4921-6, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21584302

RESUMO

A conjugation of bile acids with peptides via Cu(I)-catalyzed click chemistry has been described. Novel bile acid-peptide conjugates linked via a 1,2,3-triazole moiety based on cholic, deoxycholic and lithocholic acid derivatives were synthesized using Cu(I)-catalyzed 1,3-dipolar cycloaddition ("click" reaction). It was shown that up to three peptide fragments can be attached to a central steroid core, thus forming complex three-dimensional polyconjugate structures, which can find important applications in biochemistry, medicinal chemistry, and coordination chemistry.


Assuntos
Ácidos e Sais Biliares/química , Peptídeos/síntese química , Triazóis/química , Catálise , Cobre/química , Ciclização , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA