Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513279

RESUMO

Polysaccharides are essential components with diverse functions in living organisms and find widespread applications in various industries. They serve as food additives, stabilizers, thickeners, and fat substitutes in the food industry, while also contributing to dietary fiber for improved digestion and gut health. Plant-based polysaccharides are utilized in paper, textiles, wound dressings, biodegradable packaging, and tissue regeneration. Polysaccharides play a crucial role in medicine, pharmacy, and cosmetology, as well as in the production of biofuels and biomaterials. Among microbial biopolymers, microbial levan, a fructose polysaccharide, holds significant promise due to its high productivity and chemical diversity. Levan exhibits a wide range of properties, including film-forming ability, biodegradability, non-toxicity, self-aggregation, encapsulation, controlled release capacity, water retention, immunomodulatory and prebiotic activity, antimicrobial and anticancer activity, as well as high biocompatibility. These exceptional properties position levan as an attractive candidate for nature-based materials in food production, modern cosmetology, medicine, and pharmacy. Advancing the understanding of microbial polymers and reducing production costs is crucial to the future development of these fields. By further exploring the potential of microbial biopolymers, particularly levan, we can unlock new opportunities for sustainable materials and innovative applications that benefit various industries and contribute to advancements in healthcare, environmental conservation, and biotechnology.


Assuntos
Anti-Infecciosos , Polímeros , Biopolímeros/química , Frutanos/química , Anti-Infecciosos/farmacologia , Biotecnologia
2.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077373

RESUMO

Opportunistic pathogen Candida albicans causes systemic infections named candidiasis. Due to the increasing number of multi-drug resistant clinical isolates of Candida sp., currently employed antifungals (e.g., azoles) are insufficient for combating fungal infection. One of the resistance mechanisms toward azoles is increased expression of plasma membrane (PM) transporters (e.g., Cdr1p), and such an effect was observed in C. albicans clinical isolates. At the same time, it has been proven that a decrease in PMs sphingolipids (SLs) content correlates with altered sensitivity to azoles and diminished Cdr1p levels. This indicates an important role for SL in maintaining the properties of PM and gaining resistance to antifungal agents. Here, we prove using a novel spot variation fluorescence correlation spectroscopy (svFCS) technique that CaCdr1p localizes in detergent resistant microdomains (DRMs). Immunoblot analysis confirmed the localization of CaCdr1p in DRMs fraction in both the C. albicans WT and erg11Δ/Δ strains after 14 and 24 h of culture. We also show that the C. albicanserg11Δ/Δ strain is more sensitive to the inhibitor of SLs synthesis; aureobasidin A (AbA). AbA treatment leads to a diminished amount of SLs in C. albicans WT and erg11Δ/Δ PM, while, for C. albicanserg11Δ/Δ, the general levels of mannose-inositol-P-ceramide and inositol-P-ceramide are significantly lower than for the C. albicans WT strain. Simultaneously, the level of ergosterol in the C. albicans WT strain after adding of AbA remains unchanged, compared to the control conditions. Analysis of PM permeabilization revealed that treatment with AbA correlates with the disruption of PM integrity in C. albicanserg11Δ/Δ but not in the C. albicans WT strain. Additionally, in the C. albicans WT strain, we observed lower activity of H+-ATPase, correlated with the delocalization of both CaCdr1p and CaPma1p.


Assuntos
Candida albicans , Ergosterol , Proteínas de Membrana Transportadoras/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Esfingolipídeos/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Ceramidas/metabolismo , Farmacorresistência Fúngica , Ergosterol/metabolismo , Proteínas Fúngicas/metabolismo , Inositol/farmacologia , Proteínas de Membrana Transportadoras/análise , Testes de Sensibilidade Microbiana
3.
Sci Rep ; 12(1): 15764, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130989

RESUMO

The ban on the use of zinc oxide has increased interest in probiotics, prebiotics, synbiotics and organic acids, as well as fermented components in the diet of weaned piglets. This study assessed the effect of 8% fermented rapeseed meal in weaner diets on characteristics of the gastrointestinal tract, the small intestinal microbiota, and immune and antioxidant status. The effects were determined by measuring biochemical and haematological blood parameters, levels of class G, A and M immunoglobulins and IL-6, and the antioxidant potential of the plasma. After slaughter, the gastrointestinal tract was measured, the viscosity of the digesta was determined, and microbiological tests were performed. The results showed that the fermented component reduced the viscosity of the digesta and the length of segments of the gastrointestinal tract. It caused a statistically significant increase in lactic acid bacteria and a decrease in total bacteria. The haematological and biochemical analyses of the blood confirmed the biological activity of the fermented component. Pigs from group FR had significantly higher haemoglobin levels (p = 0.001), RBC count (p = 0.015), and haematocrit (Ht) value (p < 0.001) than the control animals. A diet including 8% rapeseed meal fermented using Bacillus subtilis strain 87Y benefits gastrointestinal function by stabilizing and improving the function of the bacterial microbiota, inhibiting growth of certain pathogens, and strengthening immunity.


Assuntos
Brassica napus , Óxido de Zinco , Ração Animal/análise , Animais , Antioxidantes/farmacologia , Bactérias , Dieta , Fermentação , Trato Gastrointestinal , Hemoglobinas/análise , Imunidade , Imunoglobulinas/farmacologia , Interleucina-6/farmacologia , Prebióticos , Suínos , Óxido de Zinco/farmacologia
4.
Biochim Biophys Acta Biomembr ; 1863(12): 183730, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34419486

RESUMO

The specific structure and composition of the cell plasma membrane (PM) is crucial for many cellular processes and can be targeted by various substances with potential medical applications. In this context, biosurfactants (BS) constitute a promising group of natural compounds that possess several biological functions, including anticancer activity. Despite the efficiency of BS, their mode of action had never been elucidated before. Here, we demonstrate the influence of cyclic lipopeptide surfactin (SU) on the PM of CHO-K1 cells. Both FLIM and svFCS experiments show that even a low concentration of SU causes significant changes in the membrane fluidity and dynamic molecular organization. Further, we demonstrate that SU causes a relevant dose-dependent reduction of cellular cholesterol by extracting it from the PM. Finally, we show that CHO-25RA cells characterized by increased cholesterol levels are more sensitive to SU treatment than CHO-K1 cells. We propose that sterols organizing the PM raft nanodomains, constitute a potential target for SU and other biosurfactants. In our opinion, the anticancer activity of biosurfactants is directly related with the higher cholesterol content found in many cancer cells.


Assuntos
Lipopeptídeos/química , Peptídeos Cíclicos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Membrana Celular/efeitos dos fármacos , Colesterol/química , Cricetulus , Humanos , Lipopeptídeos/farmacologia , Fluidez de Membrana/efeitos dos fármacos , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/farmacologia
5.
J Pharm Biomed Anal ; 188: 113369, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32534405

RESUMO

The study aimed to assess whether Pseudomonas aeruginosa strains from different sources can be distinguished by the metabolomic fingerprint and to check whether antibiotic susceptibility distinctions are available through metabolomic analysis. 1H NMR spectroscopy analysis of the bacteria metabolites was performed. Twenty-nine strains were tested (18 isolated form cystic fibrosis patients and 11 environmental). Thirty-one metabolites were identified, 12 were up-regulated in strains from CF patients, while 2 were higher level in strains from the environment. Changed carbohydrate catabolic metabolism and the metabolic shift toward the utilization of amino acids is suggested in strains from CF patients.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Pseudomonas aeruginosa
6.
World J Microbiol Biotechnol ; 35(11): 178, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31701321

RESUMO

Pseudomonas aeruginosa is a common, Gram-negative environmental organism. It can be a significant pathogenic factor of severe infections in humans, especially in cystic fibrosis patients. Due to its natural resistance to antibiotics and the ability to form biofilms, infection with this pathogen can cause severe therapeutic problems. In recent years, metabolomic studies of P. aeruginosa have been performed. Therefore, in this review, we discussed recent achievements in the use of metabolomics methods in bacterial identification, differentiation, the interconnection between genome and metabolome, the influence of external factors on the bacterial metabolome and identification of new metabolites produced by P. aeruginosa. All of these studies may provide valuable information about metabolic pathways leading to an understanding of the adaptations of bacterial strains to a host environment, which can lead to new drug development and/or elaboration of new treatment and diagnostics strategies for Pseudomonas.


Assuntos
Metabolômica , Pseudomonas aeruginosa/metabolismo , Adaptação Fisiológica , Genoma Bacteriano , Interações entre Hospedeiro e Microrganismos , Redes e Vias Metabólicas , Metaboloma , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação
7.
Microb Cell Fact ; 17(1): 121, 2018 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-30077177

RESUMO

BACKGROUND: Lipopeptides are a promising group of surface-active compounds of microbial origin (biosurfactants). These diverse molecules are produced mainly by Bacillus and Pseudomonas strains. Because of their attractive physiochemical and biological properties, biosurfactants are considered to be "green and versatile molecules of the future". The main obstacles in widespread use of biosurfactants are mainly their low yields and high production costs. Pseudofactin (PF) is a lipopeptide produced by Pseudomonas fluorescens BD5. Recently, we identified two analogues, PF1 (C16-Val) and PF2 (C16-Leu), and reported that PF2 has good emulsification and foaming activities, as well as antibacterial, antifungal, anticancer, and antiadhesive properties. Reported production of PF in a mineral salt medium was approximately 10 mg/L. RESULTS: Here, we report successful high-throughput optimization of culture medium and conditions for efficient PF production using P. fluorescens BD5. Compared with production in minimal medium, PF yield increased almost 120-fold, up to 1187 ± 13.0 mg/L. Using Plackett-Burman and central composite design methodologies we identified critical factors that are important for efficient PF production, mainly high glycerol concentration, supplementation with amino acids (leucine or valine) and complex additives (e.g. tryptone), as well as high culture aeration. We also detected the shift in a ratio of produced PF analogues in response to supplementation with different amino acids. Leucine strongly induces PF2 production, while valine addition supports PF1 production. We also reported the identification of two new PF analogues: PF3 (C18-Val) and PF4 (C18-Leu). CONCLUSIONS: Identification of critical culture parameters that are important for lipopeptide production and their high yields can result in reduction of the production costs of these molecules. This may lead to the industrial-scale production of biosurfactants and their widespread use. Moreover, we produced new lipopeptide pure analogues that can be used to investigate the relationship between the structure and biological activity of lipopeptides.


Assuntos
Lipopeptídeos/metabolismo , Pseudomonas fluorescens/metabolismo , Tensoativos
8.
J Environ Manage ; 203(Pt 2): 714-719, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27339658

RESUMO

Drought and pest resistance, together with high oil content in its seeds, make Jatropha curcas a good oil source for biodiesel. Oil cake from J. curcas is not suitable for animal feeding and thus may be profitably used for additional energy production by conversion into biogas; however, the anaerobic digestion process must be optimized to obtain good efficiency. We subjected oil cake to thermal and acidic pretreatment to deactivate protease inhibitors and partially hydrolyze phytate. We then digested the samples in batch conditions to determine the effects of pretreatment on biogas production. Thermal pretreatment changed the kinetics of anaerobic digestion and reduced protease inhibitor activity and the concentration of phytate; however, biogas production efficiency was not affected (0.281 m3 kg-1). To evaluate the possibility of recirculating water for SSF hydrolysis, ammonium nitrogen recovery from effluent was evaluated by its precipitation in the form of struvite (magnesium ammonium phosphate).Concentration of ammonium ions was reduced by 53% (to 980 mg L-1). We propose a water-saving concept based on percolation of J. curcas cake using anaerobic digestion effluent and feeding that percolate into a methanogenic bioreactor.


Assuntos
Biocombustíveis , Jatropha , Ração Animal , Animais , Reatores Biológicos , Sementes
9.
Biotechnol Lett ; 39(3): 423-428, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27878654

RESUMO

OBJECTIVES: To investigate the ability of the proteases, subtilisin and α-chymotrypsin (aCT), to inhibit the adhesion of Candida albicans biofilm to a polypropylene surface. RESULTS: The proteases were immobilized on plasma-treated polypropylene by covalently linking them with either glutaraldehyde (GA) or N'-diisopropylcarbodiimide (DIC) and N-hydroxysuccinimide (NHS). The immobilization did not negatively affect the enzyme activity and in the case of subtilisin, the activity was up to 640% higher than that of the free enzyme when using N-acetyl phenylalanine ethyl ester as the substrate. The efficacies against biofilm dispersal for the GA-linked SubC and aCT coatings were 41 and 55% higher than the control (polypropylene coated with only GA), respectively, whereas no effect was observed with enzymes immobilized with DIC and NHS. The higher dispersion efficacy observed for the proteases immobilized with GA could be both steric (proper orientation of the active site) and dynamic (higher protein mobility/flexibility). CONCLUSIONS: Proteases immobilized on a polypropylene surface reduced the adhesion of C. albicans biofilms and therefore may be useful in developing anti-biofilm surfaces based on non-toxic molecules and sustainable strategies.


Assuntos
Candida albicans/citologia , Endopeptidases/metabolismo , Polipropilenos/farmacologia , Adesividade/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/farmacologia , Ensaio de Unidades Formadoras de Colônias , Enzimas Imobilizadas/metabolismo , Esterificação/efeitos dos fármacos , Propriedades de Superfície
10.
BMC Biotechnol ; 15: 62, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123633

RESUMO

BACKGROUND: Flaxseed oil is characterized by high content of essential polyunsaturated fatty acids (PUFA) promoted as a human dietary supplement protecting against atherosclerosis. The disadvantage of the high PUFA content in flax oil is high susceptibility to oxidation, which can result in carcinogenic compound formation. Linola flax cultivar is characterized by high linoleic acid content in comparison to traditional flax cultivars rich in linolenic acid. The changes in fatty acid proportions increase oxidative stability of Linola oil and broaden its use as an edible oil for cooking. However one of investigated transgenic lines has high ALA content making it suitable as omega-3 source. Protection of PUFA oxidation is a critical factor in oil quality. The aim of this study was to investigate the impact of phenylpropanoid contents on the oil properties important during the whole technological process from seed storage to grinding and oil pressing, which may influence health benefits as well as shelf-life, and to establish guidelines for the selection of new cultivars. METHODS: The composition of oils was determined by chromatographic (GS-FID and LC-PDA-MS) methods. Antioxidant properties of secondary metabolites were analyzed by DPPH method. The stability of oils was investigated: a) during regular storage by measuring acid value peroxide value p-anisidine value malondialdehyde, conjugated dienes and trienes; b) by using accelerated rancidity tests by TBARS reaction; c) by thermoanalytical - differential scanning calorimetry (DSC). RESULTS: In one approach, in order to increase oil stability, exogenous substances added are mainly lipid soluble antioxidants from the isoprenoid pathway, such as tocopherol and carotene. The other approach is based on transgenic plant generation that accumulates water soluble compounds. Increased accumulation of phenolic compounds in flax seeds was achieved by three different strategies that modify genes coding for enzymes from the phenylpropanoid pathway. The three types of transgenic flax had different phenylpropanoid profiles detected in oil, highly increasing its stability. CONCLUSIONS: We found that hydrophilic phenylpropanoids more than lipophilic isoprenoid compounds determine oil stability however they can work synergistically. Among phenolics the caffeic acid was most effective in increasing oil stability.


Assuntos
Linho/química , Óleo de Semente do Linho/química , Fenóis/análise , Compostos de Anilina/metabolismo , Antioxidantes/química , Cromatografia Líquida , Ácido Linoleico/química , Óleo de Semente do Linho/normas , Malondialdeído/metabolismo , Espectrometria de Massas , Oxirredução , Peróxidos/metabolismo , Plantas Geneticamente Modificadas , Substâncias Reativas com Ácido Tiobarbitúrico
11.
PLoS One ; 8(3): e57991, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483962

RESUMO

In the case of melanoma, advances in therapies are slow, which raises the need to evaluate new therapeutic strategies and natural products with potential cancer cell inhibiting effect. Pseudofactin II (PFII), a novel cyclic lipopeptide biosurfactant has been isolated from the Arctic strain of Pseudomonas fluorescens BD5. The aim of this study was to investigate the effect of PFII on A375 melanoma cells compared with the effect of PFII on Normal Human Dermis Fibroblast (NHDF) cells and elucidate the underlying mechanism of PFII cytotoxic activity. Melanoma A375 cells and NHDF cells were exposed to PFII or staurosporine and apoptotic death was assessed by monitoring caspase 3-like activity and DNA fragmentation. From time-dependent monitoring of lactate dehydrogenase (LDH) release, Ca(2+) influx, and a correlation between Critical Micelle Concentration (CMC) we concluded that cell death is the consequence of plasma membrane permeabilisation by micelles. This finding suggests that pro-apoptotic mechanism of PFII is different from previously described cyclic lipopeptides. The mechanism of PFII specificity towards malignant cells remains to be discovered. The results of this study show that PFII could be a new promising anti-melanoma agent.


Assuntos
Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , Lipopeptídeos/farmacologia , Melanoma/patologia , Tensoativos/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Anexina A5/metabolismo , Cálcio/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Fragmentação do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Humanos , Melanoma/enzimologia , Micelas , Tamanho da Partícula , Fosfatidilserinas/metabolismo , Coloração e Rotulagem
12.
FEMS Microbiol Lett ; 310(1): 17-23, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20629753

RESUMO

Saccharomyces boulardii is a probiotic strain that confers many benefits to human enterocolopathies and is used against a number of enteric pathogens. Candida albicans is an opportunistic pathogen that causes intestinal infections in immunocompromised patients, and after translocation into the bloodstream, is responsible for serious systemic candidiasis. In this study, we investigated the influence of S. boulardii cells and its culture extract on C. albicans adhesion to Caco-2 and Intestin 407 cell lines. We also tested the proinflammatory IL-1beta, IL-6 and IL-8 cytokine expression by C. albicans-infected Caco-2 cells, using real-time RT-PCR. We found that both S. boulardii and its extract significantly inhibited C. albicans adhesion to epithelial cell lines. The IL-8 gene expression by C. albicans-infected Caco-2 cells was suppressed by the addition of S. boulardii extract. Our results indicate that S. boulardii affects C. albicans adhesion and reduces cytokine-mediated inflammatory host response.


Assuntos
Candida albicans/patogenicidade , Células Epiteliais/microbiologia , Probióticos , Saccharomyces/fisiologia , Candida albicans/crescimento & desenvolvimento , Adesão Celular , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces/crescimento & desenvolvimento
13.
J Agric Food Chem ; 52(6): 1526-33, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15030206

RESUMO

The main goal of this study was to generate potato tubers with increased levels of flavonoids and thus modified antioxidant capacities. To accomplish this, the vector carrying multigene construct was prepared and several transgenic plants were generated, all overexpressing key biosynthesis pathway enzymes. The single-gene overexpression or simultaneous expression of genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) resulted in a significant increase of measured phenolic acids and anthocyanins. The increase in phenolic compounds synthesis is accompanied by decreases in starch and glucose levels in transgenic plants. The flavonoids-enriched plants showed improved antioxidant capacity; however, there is a complex relationship between antioxidant capacity and flavonoids content, suggesting the great participation of other compounds in the antioxidant potential of the plants. These other compounds are not yet recognized.


Assuntos
Antioxidantes/análise , Fenóis/análise , Plantas Geneticamente Modificadas , Solanum tuberosum/química , Solanum tuberosum/genética , Aciltransferases/genética , Oxirredutases do Álcool/genética , Antocianinas/análise , Ácidos Cafeicos/análise , Ácido Clorogênico/análise , Liases Intramoleculares/genética , Solanum tuberosum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA